Software Quality Modelling in managerial decision support system

Doctoral Qualifying Examination

Ivica Cubié

Ericsson Nikola Tesla d.d. European Commission
Research & Innovations Future and Emerging Technologies
vica.cubic(@ec.europa.eu

Postgraduate study in
Electrical Engineering and Information Technology

FES

Faculty of Electrical Engineering, Mechanical Engineering and Naval
Architecture
University of Split
Croatia

Contents

CONTENLS ...ttt ettt e 2
I INtrOdUCHION. ...ttt 3
2 Software engineering and qualityccceeeiieriiieniie e 6
2.1 Software qUality.......ccccceeeviieeiiieeeeeeeee e 6
2.2 Software project failure rateccceeveveerciieercieeeee e 8
2.3 Software product life cycle........eeviieviiiiiiiiiieeee e 9
2.4 SOTtWAIE PrOCESSES. . eeervrreerrreeirreeeiireeeieeesrreesseeesseeenseesnsseeens 13
2.5 Software quality in telecommunicationsc.ccceeeeveeeenrennne 15

3 Software quality modelling...........ccceeeviiieiiieniiieeieeee e, 17
3.1 Software definition modelling..........c..cccovvveeeriieniiriniieeeieenee, 19
3.1.1 SQUARE ..o 21

3.2 Assessment quality modelling..........cccoeeveeeiiienciieniiiecieeee, 26
3.2.1 SOftware mMetricscueevueereeriieenieeieesie et 27
3.2.2 Assessment modelS........cccovueiiiiiiiiiiiniiiiieeeee e 29

3.3 Prediction MOdelScoceeiiiiiiiiiiiiiiiiieeeeee e 31
3.3.1 Software Reliability Models..........cccceeeveeriieenciieieeeeen, 31

4 Software quality managerial decision Support.........ccceeeevveeeeveennneen. 37
4.1 Software quality economics or cost approachc.cceeuee. 42
4.2 Bayesian NetWOTKScc.ceeviiieiieeeieeeie ettt 44
4.3 Multi Criteria Decision MaKing..........cccceeeveeeeieenieeeniieeenneens 48

5 Conclusion and future Work.........c.coooeeriiiiiiniiiiiee, 50
RETRIENCES. ... 52

1 Introduction

Software is ubiquitous in all areas of living and industry. It is driving
mission-critical operations, and its quality is certainly an issue of paramount
importance. Majority of software products and systems is commercial
software viewed through its major parameters of quality, time-to-market and
associated costs. Software quality is considered in different disciplines of
software engineering, such as software development and requirements
engineering, and different phases of software development. It is, on the
other hand, rarely considered as a cross cutting issue across all disciplines of
software engineering, including project and business perspectives.
Moreover, scientific considerations have seldom been synchronized with
industrial practices and issues, while industrial approach generally has not
followed scientific breakthroughs [1].

Since software development is not conducted in a controlled and
predictable way, and to some extent depends on crafting, a sound
managerial decision support system is needed. An advanced decision
support system with comprehensive software quality model will help in
better understanding and description of decision problems, better adhering
to requirements, timely reactions, decision communications and
development of better software tools and systems. The need for decision
support exists during the complete software life cycle [2]:

* Requirements, concerning the time and budget constraints
functional and non-functional requirements should be chosen [3]

* Project management, original project plan in terms of budget,
time and quality should be monitored including reaction on
possible deviations

* Maintenance, which modules are error prone to concentrate
quality assurance efforts.

This paper overviews the software quality issues and focuses on
software quality modelling with an emphasis on industrial issues and needs.
Like other engineering and scientific disciplines, software engineering also
uses models to understand and control software quality issue [4]. The
existing software quality modelling approaches will be classified and
overviewed.

The overview of software quality modelling will start with
internationally accepted and standardized definitions and taxonomies with a
view to establish a common software quality communication dictionary.
Integral approach to software quality modelling calls for inclusion of all
relevant entities. Besides the software products themselves, other important
components are processes and resources. Usual, product-based approach
will be accompanied with other general product quality approaches and
explored in order to provide reliable software quality assessment and
prediction thereof. This paper will start up the work of application of
general product notions of quality based on product, user, manufacturing
and value based approaches [5] to the software respecting all software
particularities. The main software characteristics under observation will be
reliability, maintainability and usability because they comprise the well
studied and important phenomena of software defects and removal, high
costs related to software maintenance and user acceptance of software
products and services.

The software quality model will be put in broader managerial support
system framework, comprising other important aspects i.e. time and
resources, using Multi-Criteria Decision Making (MCDM) methodology.
The whole framework should provide quantitative support for managerial
decision-making in software development emphasizing software quality
issues. The advanced decision support system should be based on sound
methodology, best practices, and empirical validation. Methodologies
applicable in decision support are modelling, measurement, simulation and
knowledge management. Moreover, an optimal decision support system
could be built by a hybrid approach integrating different methodological
contributions. The general managerial decision support framework could be
further simplified and customized by targeting the telecommunication
control software domain and data availability in order to assess its
applicability and usefulness in practical industrial software development and
further research.

The second chapter will bring the software background issues related to
software quality as well as current, quality related trends in the
telecommunication industry. Software modelling as an approach to
understand, integrate, control and predict software quality will be

overviewed in the third chapter. The fourth chapter will explore
contemporary, soft computing approach and integration of software quality
models into a broader support system for managerial decision during
software development. At the end the conclusions will set further research
issues and directions.

2 Software engineering and quality

In order to broadly and integrally address software quality issues, major
related software engineering disciplines will be overviewed. The overview
is started with a general overview on product quality [5] and software
quality particularly [6] [7]. Then we will proceed with software project
failure rate issue raised by CHAOS reports [8] and other relevant software
engineering procedures, such as software product life cycle and software
processes. The chapter finally brings some observations of software quality
in telecommunication industry.

Software quality itself is a concept embracing different qualities that
will be described in this paper. Those particular qualities are perceivable
entities that characterize software artefacts such as software modules,
products or whole software based systems and they are related to other
qualities reflecting hierarchical order or quality interdependencies. To deal
with such abstract and elusive concept, different techniques can be used in
conceptualization of software quality i.e. representation of software quality
concepts similarly to software functional requirements [4, 6, 7]. The
examples of such techniques are quality modelling [4], meta-modelling [9]
or quality ontological engineering [10]. Models formally describe problem
domain to facilitate understanding and communication among stakeholders
and to capture the knowledge about software quality.

2.1 Software quality

Software quality could be defined in many ways. The good starting
point is a general observation on product quality in different domains [5].
According to Garvin’s influential article quality can be defined in five
different ways:

* Transcendent approach of philosophy;

* Product-based approach of economics;

* User-based approach of economics, marketing, and operations
management;

* Manufacturing-based;

* Value-based approaches of operations management.

Traditionally, consideration of software quality puts a focus on code
quality and defects then on the software development processes
(corresponding to the general product manufacturing-based view), but
value-based (economics/costs) and user-based (the end customer or user
satisfaction) becomes also extremely important.

The emphasis on software defects is clearly justified by some
estimations that 50% of software development costs attribute to defect-
detection and removal [11]. Applying the value-based approach, quality
requirements and characteristics such as reliability, could been also
optimized, investing (effort i.e. person months and time) only in necessary
and agreed quality.

Besides value-based view of software quality, the other important view
is user-based view. The user-based view is grounded in satisfying the user's
needs view and it is inherently included in functional suitability, reliability,
performance efficiency and usability [7]. User-based view becomes
extremely important with new business models such as cloud and software-
as-a-service (SaaS). The user-based view for general products is well known
[5], but for software products is not well studied, especially not by the
scientific community.

On the other side there is open source software. The open source
software addresses some community or general public needs for software,
and maintenance or generally responsiveness to defects fixing depends on
voluntary contributions and is hardly predictable. That is completely
unacceptable for mission or business critical software applications.
Interesting situation is, where due to time and budget constraints, we have a
mixture of commercial and open source software and how software quality
of such products can be addressed. Besides quality assessment and
assurance, with such systems that comprise both commercial and open
source software, legal and business issues should also be carefully
considered. Maintenance and generally support of open source software
could also be commercially offered service, but that will lead to a
distributed and partly outsourced quality assurance.

Traditional approach to software quality has treated software quality as
intrinsic characteristic of a software product. That assumption is similar to
notion of software laws i.e. various software systems and processes abide by

the physics-like laws. Here a "physics-like law" means that an invariant
pattern can be applied to a variety of software behaviours with high
precision. Some examples of software laws are [12-15]:
* The observation that 20% code of a software system are
executed at 80% times,
* The Pareto principle, that a small number of modules contain a
majority of defects,
® The early fault data can be used to predict later fault and failure
data,

® The larger modules have a lower fault density than smaller
ones,

* Software metrics such as size (lines-of-codes) and code
complexity metrics are good predictors of fault and fault-prone
software modules.

Contemporary view on software quality challenges intrinsic software

quality as well as software laws. As the number of observed faults/defects
and failures associated with a software module depends also on the amount
of testing and time under operations, there is no clear evidence neither on
causality between software metrics and quality characteristics nor that
software metrics are good predictors of faults/failures [14]. The software
quality is seen as a combined influence of various properties of the product
and user based view on product economics [16].

2.2 Software project failure rate

Due to software development intrinsic problems [17] and despite the
effort and research on methodology and processes, software project failure
rates have not decreased significantly. Neither has there been any proven,
significant and systemic improvement in software quality [18]. A software
development project could be assessed on basis of the cost, time, or quality
of an outcome as in CHAOS reports [8]. On the high level assessment there
are cancelled and non-cancelled i.e. finished software projects. The software
projects cancelation rate are mostly just below 20% with decreasing trend
over time.

Product quality, for projects not cancelled, is one out of five success
criteria measured by [18] and four others are:

¢ User satisfaction,
* Staff productivity,
¢ Time-to-market,
* Budget.

In that measurement, product quality is - along with user satisfaction
and staff productivity - perceived either poor or fair (4 point, forced, Likert
scale: poor/fair/good/excellent) in approximately one third of not-cancelled
projects.

The most critical problem in finished software projects is estimating
and managing the schedule (time-to-market). The second critical
performance problem is budget. For cancelled projects critical quality
problem is on the bottom of the reason for cancellation list with 1.35%
while on top of the cancellation list are not sufficient involvement of senior
management, too many requirements and scope changes, and overspending.
Cancellation reasons should be taken with caution because they are
calculated on sample of 18 cancelled projects in 2007 [18]. Moreover, the
software quality in CHAOS assessments is perceived narrowly, and with
broader, integral, definition of software quality, user satisfaction could also
be included under software quality issue.

Software quality is not a top issue either for cancelled or non-cancelled
software projects. That is a very good argument for necessity of inclusion of
cost and time parameters for sound managerial decision support system.

Moreover with increasing of software presence in the mission critical
applications and dependability of those applications on their software
components, software quality is an inevitable issue. For software project
managerial decision support applications and accompanied models it is
important to embrace all relevant views i.e. time, cost and quality of
outcomes, as well as to harmonize and integrate all involved disciplines
such as science, engineering, management and finance [19].

2.3 Software product life cycle

An integral software quality model should address a complete software
product lifecycle and environment. Beegh emphasized the importance of the
system perspective for eliciting software quality requirements [20]. He

outlined a simple, hierarchical model of system needed to describe software
quality from the system perspective. The model comprises:

* Communicating computer systems, each of them comprises

hardware, software (the operating system and applications) and data

* Mechanical parts (to include also embedded systems) such as

mechanics, hydraulics

* Human processes (not everything is automated and at least to cover

business and policy decisions).

Since the complexity of human-made systems comprising software
elements has significantly increased a common framework to improve
communication and coherent cooperation between stakeholders is absolutely
needed. Standards ISO/IEC/IEEE 15288 System Life Cycle Processes [19],
and ISO/IEC 12207 Software Life Cycle Processes [21] cover complete life-
cycle processes of general man-made systems and software, respectively.
IEEE cooperated on and adopted both standards. ISO/IEC/IEEE-15288
describes the life cycle of human-made systems from an idea through to the
retirement of a system by defining a set of processes and associated
terminology. For system comprising software, the ISO/IEC/IEEE 15288 is
supplemented with the ISO/IEC 12207 standard. The ISO/IEC 12207
standard provides a comprehensive set of life cycle processes, activities and
tasks for a software that is part of a larger system, and for stand-alone
software products and services [21]. The standard ISO/IEC 12207 is drawn
as a framework for understanding and cooperation of stakeholders in the
international software market.

The two standards are aligned and designed to be used together for
software intensive systems. The ISO/IEC/IEEE 15288 describes the
processes at the system level, while the ISO/IEC 12207 specializes the same
processes to software, and amends software specific processes.

The ISO/IEC/IEEE 15288 differentiates (Figure 1):

* Agreement processes (Acquisition and Supply) as interfaces
toward other organizations

* Organizational project-enabling processes such as
Infrastructure, Human resources and Quality management

10

* Project processes, primary such as Project planning and
supporting such as Risk management and Measurement

* Technical or engineering processes such as Implementation,
Operation, Maintenance and Disposal.

Technical

Stakeholder Regmts Defn

Life Cycle Model Mgmt

Requirements Analysis

Infrastructure Mgmt

Architectural Design

Project Portfolic Mgmt Project Planning

Implementation

Human Resource Mgmi Project Assess & Conirol

Integration

Quality Mgmt

Decision Mgmt

Transition

Rizk Mgmt

Validation

| Verification ‘

Configuration Mgmt

Operation

Information Mgmt

Maintenance

Measurement

Disposal

Other Organizations

Engineering

Figure 1 The ISO/IEC/IEEE 15288 overview

The ISO/IEC 12207 further describes Implementation as Software
implementation comprising also Software quality testing (Figure 2). It adds
Software support processes such as Software quality assurance, Software
verification (a software meets its specifications) and Software validation (a
software fulfils its intended purpose). The third group of the ISO/IEC 12207
processes tackles Software reuse.

11

Systems Context

‘ Stakeholder Regmis Defn ‘ o— SW Documentation Mgmit

SW Implementatio

‘ System Regmits Analysis SW Regmits Analysis SW Configuration Mgmt

‘ System Arch Design ‘ SW Arch Design SW Quality Assurance

SW Verification

System Integration ‘ SW Construction SW Validation

System Qual Testing SW Integration

Implementation + ‘ S5W Detailed Design
‘ SW Review

‘ Installation ‘ SW Qual Testing SW Audit

—
‘ Acceptance Support ‘ SW Problem Resclution
‘ Operation ‘
‘ Maintenance ‘ Domain Engineering
‘ Dizposal ‘ Reuse Asset Mgmt
Engineering Reuse Program Mgt

Figure 2 The ISO/IEC 12207 complements the ISO/IEC/IEEE 15288 concerning software life
cycle

Processes in these International Standards form a comprehensive set
from which an interested party can construct system life cycle models
appropriate to its applications, products and services. Depending on the
purpose, an appropriate subset of processes can be selected and applied to
fulfil that purpose.

There are six core processes (primary lifecycle processes) in creating a
software product:

* Acquisition,

* Supply,

* Implementation (Development),
e QOperation,

¢ Maintenance,

* Disposal.

12

For software quality purpose, an abstract or general software product
lifecycle, abstracting the differences due to different approaches (two major
approaches are classical or waterfall and agile or iterative) will be useful.

2.4 Software processes

There are different approaches how companies define, perform and
institutionalize their quality management processes. Besides the software
product quality, there is also an approach that software quality can be
reliably and trustworthily assessed by evaluating the processes applied in
software production. Standards ISO 9001 [22] and Capability Maturity
Model Integration-CMMI [23] focus on the quality of the software
processes [24].

The manufacturing view [5], originally described as conformance to the
specification, could be for the software quality purposes understood as
process view. Three major approaches to software development are
classical, sequential and plan-driven, waterfall model; iterative and
prototype oriented Rapid Application Development (RAD) model [25];
and agile methodologies including Scrum as combination of incremental
and iterative model [26]. Sutherland asserted that combining of CMMI with
Scrum improves software quality [27].

The waterfall model organizes the software development lifecycle into
five linear stages:

* Requirements analysis and definition,
* System and software design,

* Implementation and unit,

* Integration and system testing,

* Operation and maintenance.

It is the oldest and the most mature software development model. The
waterfall model shows its advantages with large and complex systems, but
has also a number of disadvantages such as inflexibility when facing
changing requirements and high complexity irrespective of the project size
[28].

RAD model is trying to speed up the development with lowering costs
and improving quality. The focus is on prototyping and user involvement.

13

The main advantages are easiness of implementation and short time-to-
market, while main disadvantages are a real threat of bad design due to the
speed development and necessity for strong control and project management
[25].

Agile development moves focus from detailed planning and plan-based
control to change management and collaboration between developers and
customers [29]. Agile software development comprises different practices
and methods. The most know and adopted Agile methods are:

* Extreme Programming (XP) with focus on implementation,
* Scrum with focus on agile project management.

In Scrum, a self-managing team develops software in increments. Those
increments are called sprints and last from one to four weeks. Wanted
system features are registered in a backlog. The product owner decides
which features from the backlog should be developed in the following
sprint, depending on estimated feature effort. A sprint starts with planning
and ends with a review. Team members coordinate themselves in daily
stand-up meetings [26]. The important characteristic is that a previous sprint
should finish with a simpler, working version of the system that will be
enhanced in the following sprint. Such a sprint or iteration can be also
treated as a miniature waterfall life cycle [28].

As Agile development moves from academic and education institutions
towards mainstream software development community and professional
software development organizations [30], some studies compare software
quality regarding the applied process. Classical approach i.e. waterfall
model has quality assurance activities in parallel with development. The
contemporary, agile approach integrates software quality assurance with
development by test driven development combined with Scrum
methodologies.

Huo compared the software quality assurance activities in waterfall
model (Software Quality Assurance-SQA and Verification and Validation-
V&V) and Agile approach (pair programming, refactoring, continuous
integration and acceptance testing) [28]. The conclusion was that Agile
approach may lead to better software quality and shorter time to market due
to tight integration of quality assurance practice with the development

14

phase, higher frequency of occurring quality assurance practices and their
application from the earlier stages.

Li conducted a longitudinal case study on software quality with a
transition from a plan driven process (17 months) to Scrum (20 months)
[26]. The conclusion was that Scrum may not lead to a lower defect density
than a plan-driven process, but defects are detected and fixed much earlier
due to the short sprints (four and two weeks) and the defect fixing efficiency
could be improved due to daily Scrum meetings and knowledge sharing. All
that comes at the cost of increased stress of Scrum developers to deliver on
time and within budget, which could also make developers reluctant to take
care of maintainability.

CHAOS Manifesto [8] is advocating the agile process, stating that the
agile process has built-in quality and is test-driven.

2.5 Software quality in telecommunications

In telecommunications industry with current major trends of hardware
virtualization, software defined networking (SDN), cloud computing and
software-as-a-service (SaaS), software products and systems take a
significant share of total investment and became the major component of
telecommunication mission critical operations.

Telecommunication systems shall have the availability of five nines
99.999% which means 5.26 minutes down-time per year with planned
upgrades and maintenance. Telecommunication system providers
strategically perform quality assurance activities to ensure the required level
of quality [24].

Cloud business model and SaaS paradigm induce shifting of focus
toward end users. In order to enhance customer experience service and
support, the ability to rapidly resolve any performance or technical issue is
very important. Common customer-driven key quality indicators are:

* Customer experience index for voice

* Customer experience index for data

* Data connection failure rate

Those customer-centric indicators have to be further translated into
specific network and IT indicators. That will enable service providers to

15

drill down from customers experience issues to the infrastructure level,
including software support, for troubleshooting. Each system service session
should be mapped to the network and software resources that contribute to
delivering the service. To identify the root cause of user experience quality
problems and bottlenecks, the essential tool is monitoring function. Such
monitoring function depends on detailed event reporting from the network.
The relation to software defects or general software quality is mainly
indirect, 1i.e. after detection of cumbersome network functionality,
responsible software drivers should be identified and issue fixed.

The trend with the telecommunications services is direct interaction of
customers with the network: subscription to a service, changes of service
levels and subscription cancellations should be done directly by end users in
a few minutes. The conformance to a Service Level Agreement becomes
also essential and should be described by technical and quality
characteristics translatable to customer quality indicators.

Software becomes an integral part of various service systems, therefore
the software quality is somehow reflected through the quality of service. In
a holistic approach to software quality, the user experience (UX) becomes
the most important measure of software quality, and user experience is
closely coupled with quality of service (QoS).

16

3 Software quality modelling

There is a number of models treating software quality but with different
approaches. Thus the software modelling classification has become very
important. Fenton and Neil simply observes software models and their
applications as a comprehensive software metrics [1].

The main applications and use of models are predictions of resource
requirements and quality predictions [31]. The big amount of quality
prediction models is defect prediction models. Defect prediction models
comprise also classification models. The classification models predict a
software module as fault-prone (fp) or not fault-prone (nfp). In order to
timely identify fault-prone modules, before the testing so the tests could be
focussed and optimized, most of the classification models are based on
software metrics. Common approaches for exploiting software metrics data
is data mining and machine learning, while common classification
techniques are decision rules and decision trees (C4.5 and Random Forest)
based models [32, 33].

A first, broad qualification of software models was proposed by [34].
The classification was based on level of specialization of so called quality-
evaluation models:

* Generalized quality-evaluation models,
* Product specific models.

The generalized models are further divided on overall, segmented and
dynamic. A segmented model estimates quality for different industrial
segments, and an example of segmentation is reliability level (Table 1).

Table 1 A segmented model for reliability level estimation (Tian 2004)

Product type Failure rate (per hour) | Reliability level
Safety-critical software <10”’ Ultra-high
Commercial software 10° to 10~ Moderate to high
Auxiliary software > 10" Low

Telecommunications software, according to Tian [34], belongs to
commercial software segment, while Wood [35] considers it critical
business application. Telecommunications software is not so critical as
military or space software applications, but their importance as basic

17

services for the non-telecom businesses and the complete society, makes
telecommunications software more critical than the rest of commercial
software. Five nines or 99.999% of required availability for
telecommunications software means 5.26 minutes of downtime per year or
translated in failure rate (per hour) that allowed just a fraction of failure or
few failures depending on their severity and recovering pace [24]. If you
have a serious failure that will stop a telecommunications software for a half
day (12 hours), the failure rate per hour will be 8 - 10~7 without any other
failure.

The product specific models provide more precise evaluations due to
usage of product specific data. Tian further divides the product specific
models to [34]:

* Semicostumized models use extrapolation of product history to
predict quality for the current project, and as such are suitable
for software products with more releases. An example of the
group is the orthogonal defect classification (ODC) model [36,
37].

* Observation-based models estimate quality according to current
project observations e.g. observed defects and associated time
intervals are fitted to software reliability growth models to
evaluate product reliability like in the Goel-Okumoto model
[38].

* Measurement-driven predictive models establish predictive
relations between quality and historical measurements either
using statistical analysing techniques or learning algorithms. An
example is tree-based model to analyse the relationship between
defects fixes and various design and code measures [34] in order
to identify error prone modules and focus inspection effort on a
few selected modules.

As telecommunications software industry mainly deals with software
system releases, usually of evolutionary nature, the orthogonal defect
classification (ODC) model could be successfully applied and even used to
sufficiently quantify the key cause-effect relationships for further software
development process improvement.

18

Another software models' classification scheme is based on different
purposes of numerous software quality models, namely definition,
assessment, and prediction of quality [4]. Definition, assessment and
prediction are not independent of each other and those mutual dependences
between different model classes and real software quality models are
depicted in Figure 3.

Prediction
Models

Assessment
Models

Dgﬁﬁition
Models
15091267,

~

\

Figure 3 Definition, Assessment, prediction (DAP) Classification for quality models [4]

An ideal model features prediction model as the most advanced form of
quality models, but it can also be used for definition and assessment of
quality. The definition-asses-prediction (DAP) classification will be used
throughout this paper to overview existing software quality models.

3.1 Software definition modelling

A common language or taxonomy is needed to establish common
dialogue and an understanding on software quality issues. The taxonomies
are usually brought by the software quality definition models and standards.
Quality definition models comprise the set quality characteristics and the
relation between them as basis for specifying quality requirements and
evaluating product quality. Those quality characteristics should reflect the
overall quality of the software product [39, 40].

The common and accepted software definition models are:

1. McCall (1977)

2. Boehm (1978)

19

3. FURPS (1992) Grady and Hewlett Packard
4. ISO/TEC 9126 (1991)

5. Dromey (1995)

6

. ISO/IEC 25000 — SQuaRE (2005)

McCall in his handbook on software quality emphasized the
contribution of the software quality metrics to a more disciplined,
engineering approach to a software quality assurance [41]. He applied the so
called factor-criteria-metrics (FCM) approach in order to bridge the gap
between users and developers. Quality factors (characteristics) describe the
external or user view and have a set of quality criteria describing the internal
or developer view. Each quality criteria has one or more metrics.

Boehm brought a hierarchal structure similar to McCall, comprising
high, intermediate and low level of software quality characteristics [42, 43].
He additionally emphasizes the maintainability characteristic [40] but does
not suggest any approach to measure their quality characteristics [39].

FURPS model [44] differentiates functional and non-functional
requirements. Functional requirements related characteristic (F -
Functionality) are defined by input and expected output. Non-functional
requirements related quality characteristics are Usability, Reliability,
Performance, and Supportability (URPS).

ISO/IEC 9126 [45] international standard suite represented a high-level
framework for characterizing software product quality. The standard was
considerably founded on the Boehm model [46]. It decomposed software
quality into six characteristics, and these characteristics are further
decomposed into subcharacteristics. Quality subcharacteristics are results of
internal attributes and are manifested externally during the software product
usage. The models (internal/external and quality in use) itself, defined in
standard ISO/IEC 9126-1, are accompanied with related technical reports
9126-2 (external metrics), 9126-3 (internal metrics), and 9126-4 (quality in
use metrics) [47].

Dromey defines a model framework that places a single level of
quality-carrying properties between the high-level quality attributes (i.e. the
ISO/IEC 9126 characteristics extended with the reusability) and the
components of a product [46]. Using the model framework, a quality model
can be built per product in bottom-up as well as by top-down approach. The

20

quality-carrying properties serve as the intermediaries that link product
components to quality characteristics (high-level attributes) and vice versa.

ISO/IEC 25000 [48] suite or Systems and software Quality
Requirements and Evaluation (SQuaRE) is the ISO/IEC 9126 successor and
is more completed since it is based on previous works and models.

The SQuaRE set of standards, especially ISO/IEC 25010 standard,
System and software quality models, due to their maturity and reliance on
the previous definition models are a straightforward choice for the definition
model.

3.1.1 SQuaRE

The International Organization for Standardization (ISO) and
International Electrotechnical Commission (IEC) both specialized in
international standardization, established a joint technical committee,
ISO/IEC JTC 1, to deal with standardization in the field of information
technology. The international standard series ISO/IEC 250xx Systems and
software engineering, Systems and software product Quality Requirements
and Evaluation (SQuaRE) were prepared by ISO/IEC JTC 1, Information
technology, Subcommittee SC7, Software and system engineering in 2005.
A minor revision of SQuaRE series was published in 2014 [48]. The
SQuaReE series of standards are depicted in Figure 4.

Quality Model
Division
2501n

Quality Quality Management Quality
Requirements Division Evaluation

Division 2500n Division
2503n 2504n

Quality Measurement
Division
2502n

Extension Division 25050 - 25099

Figure 4 Organization of SQuaRE series of international standards [48]

21

Software quality models and evaluation were separately covered by the
SQuaRE predecessors ISO/IEC 9126 (Software product quality) and
ISO/IEC 14598 (Software product evaluation), respectively. The ISO/IEC
14598 was a spin off of the original standard ISO/IEC 9126:1991.

The general goal of creating the SQuaRE set of standards was to
coherently cover two main processes:

* Software quality requirements specification,

* Systems and software quality evaluation,
supported by a systems and software quality measurement process. SQuaRE
establishes criteria for specification, measurement and evaluation of systems
and software product quality requirements.

In order to facilitate those goals and align the customer definitions of
quality with attributes of the development process, the SQuaRE includes a
two-part quality model (internal/external product quality and quality in use).
The ISO/IEC internal/external product quality model i.e. a definition model
is shown in Figure 5. The model has eight main characteristics and 31
subcharacteristics hierarchically organized.

The non-functional, ISO/IEC 25010 quality characteristics that have
been broadly addressed by the software engineering practitioners and
scientists are reliability and maintainability, but as common concepts with a
slightly different definitions and without breaking down into
subcharacteristics.

22

Functional completeness
| Functional correctness
Functional appropriateness

Functional
suitability

Co-existence
Interoperability

Maturity
Availability
Installability Recoverability

Replaceability | [doa€l1l{14% Fault tolerance
Adaptability

Learnability

Appropriateness
recognizability

Operability
User error protection
User interface aesthetics

Modularity

Reusability 1SO 25010
Analyzability | LUEUEIGEL{1]4Y

Modifiability
Testability

Accessibility

Time behavior | {ldnELl

a— Confidentiality
Resource utilization | [3i{aTlI4Y —_—

. i Integrity
t
apacity | Non-repudiation

Accountability

Authenticity

Figure 5 ISO/IEC 15010 product quality model

The ISO/IEC 25010 quality in use model is shown in Figure 6. The
model has four characteristics broken down into nine subcharacteristics.

Usefulness
i i Trust
—— Satisfaction — i
Pleasure
Comfort
—1 Effectiveness
Economic risk
mitigation
Health and
ity i Freedom ;
| uallylhuse } from risk - safety risk
mitigation
Environmental
S— risk mitigation
Efficiency
t
Context Contex
coverage | | completeness
Flexibility

Figure 6 ISO/IEC 25010 Quality in use model

23

The quality in use model has not been extensively explored by software
engineering scientists as the software product quality, but with the actual
cloud business models and software-as-a-service (SaaS) concept quality in
use is actually very relevant and important. The quality in use model can
serve as a definition model for quality user view approach [5] and support
trends that software must fulfil end user expectations.

A close term to quality in use is user experience. With the SaaS
concept, the user experience becomes quality of service (a concept
borrowed from telecommunications domain and originally related to
telephony service expressed through jitter, delay, et.). Parmakson argued
that despite differences between software quality models and quality of
service models, there is room for substantial level of alignment between
these two models [49]. Since SaaS becomes an important business model,
further alignment of software models (mainly software in use model, but
also internal/external quality models) with quality of service models is
necessity.

QoS relies on the customer’s perception and it is not an inherent quality
of the whole system representing a service. Several models for QoA are in
usage:

* SERVQUAL

* RATER model

* E-SERVICE QUALITY

The main dimensions of service quality are:

* Reliability

* Responsiveness

* Assurance

* Empathy

Relation between ISO/IEC 25010 internal and external software product
quality models and quality in use models along the software product life
cycles is depicted in Figure 7.

24

Software Product Effect of Software Product

=\
\

T('oulexl of use

Internal External
> Quality Quality

Attributes A ------ Attributes /<« ----- Attributes
depends on depends on /

‘ T T

Internal Measures External Measures Quality in use Measures

<

Figure 7 Quality in the lifecycle (Figure C.2-ISO 25010) [39]

Castillo brought into focus the importance of the non-functional aspects
and proposed a functional model expressed in UML, REASQ
(Requirements, Aspects and Software Quality) [50].

Software quality taxonomy itself is a key factor in ensuring adequate
quality. Linking high levels of end user’s quality perception, software
engineers (developers and maintainers) and software business notions of
quality to software systems and products characteristics are necessary to
quantitatively asses fulfilment of software quality requirements. Since the
whole process involves different stakeholders it is also important to
facilitate communication and understanding between them. Widely accepted
and validated software measures are necessity for that [48].

The SQuaRE series addresses systems and software product quality
requirements specification, measurement and evaluation, while quality
management of software development processes is a distinct and separate
issue defined in the ISO 9000 family of standards. The main SQuaRE parts
that can be used in a general software quality model are the terms and
definition, new general reference model and systems product quality (not
supported by ISO/IEC 9126). The ISO/IEC 25010 as a software quality
definition model defines the software quality taxonomy i.e. comprehensive
expressions and terms, and simple and accurate definitions. The main
disadvantages are generality and lack of implementation details, as well as
the division between quality characteristics and subcharacteristics are
sometimes fuzzy and overlapping.

25

Existing quality definition models lack clear decomposition of complex
software characteristics. Quality characteristics and attributes are mostly too
abstract to be straightforwardly checkable in a real software system.
Moreover, quality definition models, in measurements and metrics
accompanying the quality characteristics, often propose some activity
measurements that are hardly feasible and in an industry environment
cannot be justified [1].

3.2 Assessment quality modelling

Quality assessment models often extend quality definition models,
usually focusing on one or a few software quality characteristics of choice,
to control conformance to requirements. Assessment models can be used to
objectively specify and control stated quality requirements during software
requirements analysis (software implementation core process) and software
verification (software support) processes. During software implementations,
the software quality assessment model is the basis for all quality measuring
including the product, processes/activities and the environment [34].
Besides using quality assessment models during the software
implementation process or phase, they can furthermore be used to define the
criterion for quality certifications [4].

Software metrics based models are commonly used to assess the quality
of a given system [4]. A number of metrics for software quality
measurements have been proposed, but fail to clearly explain the impact and
relation that specific metrics have on software quality and specific quality
characteristic [7]. The aggregation of metric values in bottom-up fashion
along the hierarchical levels is also challenging due to the lack of a clear
semantic [4].

The following requirements to be met by a practical model based on
source code analysis are defined [1, 51]:

* Language, architecture and technology agnostic measures,

* Measures availability and easiness of collecting

* Straightforward definition provides easy computation

* Simple measures, understandable to non-technical staff and
management.

26

* Root-cause analysis should be enabled by clear causality
between code-level properties and system-level quality.
The overview of software quality assessment models will be started
with some basic metrics, and then followed by some common metrics
aggregations and quality assessment models.

3.2.1 Software metrics

Software metrics deal with quantification of software properties and
characteristics (mainly by measurements of source code), and aspects of
software quality testing and assurance such as recording and monitoring
defects during development and testing phases. Software metrics should be
a cornerstone in an ultimately empirical discipline such as software
engineering, but they are often misunderstood and misused (Fenton 2000).
Software metrics seldom measure the intrinsic quality attributes, but they
pretty well compare related quality attributes of different parts of a software
systems. In essence, software metrics is more a modelling than a measuring
tool [52]. Moreover, software measurement or metrics theory or scientific
research is out of step with practice or industrial application contribution
[1]. The single biggest boost for industrial metrics in the US was the CMM
(Capability Maturity Model, the CMMI predecessor), since evidence of use
metrics is important for achieving higher levels of CMM [31].

The key basic metrics, chronologically ordered, are:

* Lines of Code (LOC) or KLOC for thousands of line of code,
used as a surrogate measure of product size based on assumption
that size is critical for both quality and effort/cost.

* Software complexity such as cyclomatic complexity (McCabe
1976) or Halstead model [53].

* Functional size such as Albrecht function points, supposing to
be programming language agnostic.

Metrics in an industrial setting are also well studied but mainly on
private data sets [54].

Fenton and Neil divide software metrics into two components, the one
defining the actual measures, and the other one concerned with collecting,
managing and using the measures [31]. For the latter component, an idea
that metrics activities shall be goal-driven i.e. Goal-Question Metric (GQM)

27

was a real breakthrough [55]. Both quality model design methods, GQM
and McCall’s factor-criteria-metrics (FCM) recommend combination of
different metrics in order to fully assess the goal or factor i.e. the software
quality characteristic or subcharacteristic. Moreover, we are looking for
insights in the quality of the whole system based on the metric values of its
low-level components such as classes and methods. Consequently, the two
big challenges for software metrics assessment practice are [56]:

* Metrics integration or combining different software metrics;

* Aggregation of software metrics (an individual or a composes)

defined per components into one high level value.

3.2.1.1 Metric composition

Metric composition is a necessity for a full and reliable assessment of
software characteristics or subcharacteristics. Changeability —was
subcharacteristics of maintainability characteristic in ISO/IEC 9126 with
definition: “the capability of the software product to enable a specified
modification to be implemented”. These subcharacteristics may be
addressed by several metrics, such as number of source lines of code (LOC),
cyclomatic complexity, number of methods per class, and inheritance depth
[56]. ISO/IEC 25010 have changed decomposition of maintainability
characteristic and define new modifiability subcharacteristics as
combination of old, ISO/IEC 9126, changeability and stability
subcharacteristics. That additionally emphasizes the metrics combination
challenge. Main challenges for metrics composition are the ranges of
individual metrics and different meanings. That may impose a usage of
specific composition method for each characteristic.

3.2.1.2 Metric aggregation

Common metric aggregation techniques are aggregation by simple or
weighted averaging. Averaging the results of a metric, especially the simple
one, has an undesirable smoothing effect that can dilute bad results in the
overall acceptable quality. More recently, there is an interdisciplinary trend
in scientific literature on aggregation techniques for software metrics in
using more advanced aggregation techniques well known in econometrics

28

for their applicability to studying income inequality, such as the Gini
coefficient, and the Theil and Hoover indices [51, 52, 57, 58].

3.2.2 Assessment models

Quality assessment models often assess specific quality characteristic
and they are relatively simple. There are also integrated, comprehensive
quality assessment models that assess overall software quality, but they
much more complex.

Software maintainability and its impact on software industry is one of
the most important aspects of software quality due to the related incurring
costs. The total cost of maintenance is estimated to 40% of the development
cost, or even worse Hewlett-Packard estimation from 1992, that 40 to 60
percent of the cost of production is maintenance expenses [52]. Although
ISO/IEC 9126 recognizes maintainability as one of main software product
quality characteristics, as well as ISO/IEC 25010, they do not provide
measures for estimating maintainability on the basis of a source code. The
proposed metrics for assessing the maintainability are based on the
performance of the maintenance activity by the technical staff [51]. ISO/IEC
9126 decomposes maintainability into analysability, changeability, stability,
testability and maintainability conformance subcharacteristics, while
ISO/IEC 25010 keeps analysability and testability, changeability and
stability are replaced with modifiability, add reusability and modularity
while discards maintainability conformance.

Using regression analysis upon the measurements of source code and
calibrating these results, the Maintainability Index (MI) has been proposed
(Oman 1994) (Coleman 1994). The MI is a composite index, based on
several different metrics for a software system:

171=5.2In(HV)—0.23CC—16.2In(LOC)+50. OsinN2.46 * COM
where:

HV is the Halstead Volume metric, a composite metric based on the
number of (distinct) operators and operands in source code;

CC is the Cyclomatic Complexity metric;

LOC is the average number of lines of code per module;

COM is optionally the percentage of comment lines per module.

29

The higher the MI, the more maintainable a system is supposed to be.
The original MI defined an assessment whose relation to a definition of
quality was unclear. The main problems with the MI identified by (Heitlager
2007) are:

* Since the MI fitting function is obtained by statistical
correlations, there may be no causal relation between the
measured values or metrics and the MI value derived from them.

* The average Cyclomatic Complexity hides the presence of high-
risk modules due to a power law distribution of complexity per
module.

* The Halstead Volume metric is difficult to define and compute.

* From the MI value it cannot be concluded which
subcharacteristics of maintainability contribute to that value.

Heitlager alternated the original MI and chose some source code
measures mapped via source code properties onto the subcharacteristics of
maintainability according to ISO/IEC 9126 (Fig. 8), [51]. Thus he built a
software maintainability assessment model using the elements of a
definition model (ISO/IEC 9216).

system quality characteristics influences
e.g. changeability

source code property indicates
can be caused by e.g. complexity

source code measure
can be measured by e.g. cyclomatic complexity

Figure 8 Mapping of maintainability subcharacteristics to source code measures

Overall or integrated quality assessment model represents all or a big
subset of quality characteristics and relationships that affect software
quality. This model requires more data and it is too complex to represent by
an algorithm. Some definitions of measurement of quality characteristics
and subcharacteristics are based on subjective assessment from project and

30

quality assurance group members. Those subjective remarks could come
with significant deviations.

3.3 Prediction models

The common model will surely help in communication, assessment and
improving overall software quality. Ideal prediction model is the most
advanced quality model because it can also be used for the definition and
assessment of quality. By such approach we will get a model appropriate for
different purposes such as:

* Requirement management
* Resource estimation
* Quality estimation

Project management will benefit a lot from the above estimation.
Software defect predictors serve as identification of fault-prone software
modules to properly allocate resources for defect detection and removal [59,
60]. Both references validated their claims on large telecommunications
software systems (C++ and Java programming languages). Reliability
predictors help in release planning or when to stop testing [4]. Coleman
proposed the use of automated maintainability assessment for different
management decisions such as buy-versus-build decisions, test resource
allocation and the prediction of defect-prone components [52].

An important class of software quality prediction models is reliability
growth models [4].

3.3.1 Software Reliability Models

Reliability has been considered as the most important software quality
characteristic [61] and consequently attracted lots of interest and research in
the software community, especially software reliability modelling. ISO/IEC
25010 lists reliability as one of the eight main characteristics of software
product quality, with subcharacteristics:

* Maturity

* Availability

* Fault tolerance

* Recoverability.

31

The ability to provide evidence or trustable prediction of reliability is a
prerequisite for the new software release acceptance in business and safety
critical applications. Majority of existing software reliability models are
based on slightly different software reliability understanding, definitions and
data, hence cannot be explicitly linked to a definition of quality as it was
described by the ISO/IEC 25010 standard. ISO/IEC 25010 defines
reliability as a degree to which the software product can maintain a
specified level of performance when used under specified conditions.
Zeljkovi¢ used ANSI/IEEE definition of reliability as the probability of
failure free software operation for a specified period of time in a specified
environment [62]. Faqih listed reliability and availability as important but
separated software quality attributes, while Wood sees software reliability is
a critical component of computer system availability [35, 63].

Ideally a software reliability model should measure or estimate
ISO/IEC reliability subcharacteristics and then compose them into reliability
software quality characteristic.

Su et al. classified software reliability models into two major
categories: deterministic and probabilistic (stochastic) [64]. The
deterministic one deals with the number of distinct operators and operands
in the program. The probabilistic one is used to study the failure occurrences
and the fault removals as probabilistic events i.e. accounts for random error.
The probabilistic models can be further broken down into different classes
such as error seeding, failure rate and non-homogeneous Poisson Process
(NHPP).

The error seeding software reliability model originated with fish
tagging. Fishery biologists tagged some fish to estimate the size of fish
population in a fishery area. The ratio of the re-caught tagged to the total
number of tagged fish is assumed to be the same as the ratio of the total fish
caught to the total number of fish in the area. Similarly, error seeding is
inserting deliberately errors into software. Alternatively the errors found by
debugging can be tagged. Then, the number of indigenous errors in the
software can be estimated based on the number of errors found by a
debugger unaware of the seeded/tagged errors and the number of errors
appearing in both sets. Neufelder strongly advised against error seeding
implementation [65].

32

The NHPP model, as a representative of time domain, non-homogenous
Markov models (Figure 9), is the most popular model in literature due to the
assumption that it has the ability to well describe the software failure
phenomenon [66]. The number of faults present in a software product is a
random variable assumed to display the behaviour of a non-homogenous
Poisson Process. The first NHPP model was proposed by Goel and
Okumoto [38]. The Goel-Okumoto model is an exponential model with a
concave characteristic curve.

Software Reriability Models

Data Domain TimT Domain
Error Input l—lomo Non-Homo Semi Others
Seeding Domain Markov Markov Markov
Finite Intllnite
Failures Failures

Figure 9 Classification of Software Reliability Models [66]

Another important classification is the distribution of the number of the
failures per time such as the Poisson and binomial distribution, members of
the large class of exponential families of distributions. The development of
all these models was based upon concepts adapted from hardware reliability
theory [61].

Wood classified software reliability models in two categories based on
used data: models that predict reliability from design parameters and models
attempt to predict reliability from test data [35]. The first type of models use
code properties and measures such as lines of codes, nesting loops, external
references, input/output operations to predict the number of defects in
software and they are usually referenced as defect density models. The type

33

of models relied on test data are called software reliability growth models
and they are trying to statistically correlate defect detection data with
known functions such as an exponential function in order to estimate future
behaviour [35].

A similar classification on static and dynamic reliability models is
proposed by [67]. The static software reliability models are based on source
code properties, while the dynamic models are based on temporary
behaviour of debugging process during test phase. Models describe error
detection are called Software Reliability Growth Models (SRGMs).

3.3.1.1 Software reliability growth models

Software reliability modelling appeared around the early 1970s with
basic approach of modelling defect data shown at testing to predict future
behaviour in two main classes: failures per time period and time between
software failures. SRGMs can give us indication of software readiness for
release as well as indication of the number of failures in operation after
software release.

Most of SRGMs have the total number of defects contained in a set of
code as a cornerstone parameter. With the total number of defects and the
current number of discovered defects, we can get the residual defects,
which can lead to the failures during the software operation.

The next SRGM ground parameter is functional relation of number of
defects and time. During the test the time is represented by amount of
testing and can be expressed as calendar time, execution time or number of
test cases. The defect detection rate is reciprocal of the time between
detected defects. Software defects usually lead to software failures, but
defects can exist even if the software continues to operate. While the
cumulative number of defects increases, the defect discovery rate decreases
as the amount of testing increase.

Due to difficulties to extrapolate system operation time from the time
representation during the testing, it is consequently difficult to extrapolate
failure rate during the system operation from the defect discovery rate
during the testing. Thus the focus is on number of remaining defects in a
code instead the failure rate. The residual defects is an upper limit of
failures a user could encounter during the operation of software [35].

34

Defect detection data is statistically interpolated by mathematical
functions, which are used to predict future failure rates or the residual
defects in software. Two shapes of software reliability growth model
functions are common: concave and S-type, Figure 10.

Cumulative
errors

Concave type

S - type

\/

Time

Figure 10 Common shapes of the SRGMs

The common software reliability growth model functions are [35, 62]:
* Goel-Okumoto a(1 — e~?%)

* Gompertz S-type a(bct)

* Weibull concave a(1 — e~2t%)

* Pareto concave a[1 — (1 + é)l_a]

* Yamada Raleigh S-type a {1 — exp [—ra (1 - e_%ﬂtz)]}

Those functions should be customized in order to fit sample defects
data i.e. the function parameters should be determined. The basic methods
for estimating the parameters of a statistical model are:

* Maximum likelihood estimation (MLE)
* Least square estimation (LSE).

The proposed software reliability growth functions are nonlinear and
the MLE and LSE are not optimal. Different methods for parameters
optimization are proposed such as particle swarm optimization and ant
colony optimization [67, 68].

Zeljkovi¢ claims that software reliability cannot be calculated during
the design phase [62]. But Goel-Okumoto model,

m(t) = a[l -1+ ,Bt)e‘ﬁt]

35

for which the a and 8 parameters are estimated using maximum likelihood
estimation method and real software system failures data, shows good
matching between model and real complex software system.

Faqih brings some review of software reliability growth model
criticisms [63]. The ground for the criticisms is that authors often
unjustifiably make some assumptions in their mathematical formulation of
the model to provide mathematical tractability. For example, NHPP models
assume the nature of a software faults and the stochastic behaviour of a
software failure process. Contrary, the neural network build a model
adaptively from the given failure data [64]. Moreover, most of the proposed
software reliability models are not tested and validated by using real data.
The main reason is that software companies are unwilling to share their data
on software defects and failures. Software reliability growth models are
based on hardware reliability growth models, which calls for additional
caution because software cannot be worn out. Another limitation of the
SRGMs is that they can be applied from integrated testing onward (not for
the early phases of the life cycle).

36

4 Software quality managerial decision support

The most important requirement of software metrics in general is to
provide reliable information to support quantitative managerial decision-
making during the whole software lifecycle span [31]. This chapter will try
to roughly sketch all needed requirements and components for industrial,
integral and causal modelling of software quality for a support system/tool
for managerial decisions.

The universal and working software quality
definition/assessment/prediction model that crosscuts different usages and
applications related to software quality will be very convenient and useful
due to its eventual familiarity within software community but the big open
question is “Is such model plausible?”.

The quality software engineers traditionally measure certain metrics.
Fenton as traditional software industry metrics lists size (LOC or similar
metric), defect counts and efforts in person-moths due to its clear meaning
and easy collecting [1]. Chang sees issue with mapping of a decision
maker's perception to exact number produced by software quality models
[69].

Some methodologies and best practices were proposed for building
software quality models:

* An ideal software quality model should embrace a definition
model or taxonomy, an assessment model (including metrics),
and some prediction ability [4]

* Goal-question-metric, GQM [55] paradigm.

Those approaches are overlapping. The GQM methodology proposes
top down approach. First the goals must be specified according to the
organization and project needs, then those goals must be traced all the way
down to the data that are going to define those goals operationally, and
finally a framework for interpreting the data with respect to the stated goals
must be provided. Furthermore, in fitting a model to a given data set, the
model’s assumptions must be respected. For example if a selected model
(e.g. Scheneidewind’s model) assumes that the time intervals over which the
software is observed or tested are all the same magnitude, it cannot be used
with data for which the assumption has not been fulfilled. For reliable future

37

predictions, the environment in which the data have been collected must not
change considerably from one in which the software is being tested or
observed [61].

A goal could be defined for a product, process or resource with respect
to various quality models, points of view and environments. Our goal is
quantitative support for managerial decision-making emphasizing software
quality issues.

The appropriate quality model should embrace everything at least as a
constant. In order that a fixed parameter (constant) could be replaced by a
model, some hooks and interfaces toward the dependent values in the rest of
model must be defined. The process could be replaced by a constant e.g.
waterfall or agile process. Resources, for simplicity reason, could also be
fixed and could be represented by costs/hour constant.

So our main point of interest will be software product during its whole
life cycle. Software product could be further decomposed via costs, time and
quality attributes/dimensions. Cost and time are pretty clear dimensions,
while quality is still an elusive concept [7].

The managerial quantitative support includes trading off and balancing
software in optimal time/cost/quality space. For that goal, software quality
must be modelled in order to the define manoeuvring space. Wagner
proposes representation of the 3D space of quality, time and costs by one-
dimensional space of cost or profit, because profit is in the focus of
commercial software [16]. By choosing costs as universal measure for
different software quality aspects/activities we cover value based quality
view [5]. A quality model is our main point of interest. It must clearly
define quality codomain in order to know what costs and time degrees of
freedom are.

Concerning the points of view, the dominant view for software quality
has been product view [5], but for a contemporary, integral and trustable
quality model user view must be included, either through user related
software product quality model main characteristic of usability or software
in use model.

Concerning the environment, the main area of interest will be
telecommunication software domain, due to availability of data and
comprehensive knowledge on software implementation, maintenance and

38

quality assurance processes. The telecommunications (control) software as
well as other parts such as hardware is planned in advance through different
roadmaps. Those roadmaps are evolutionary, mutually dependent e.g. a
major software release has to follow an introduction of new hardware.
Moreover, the roadmaps are related to or have to implement the company's
business strategies, customer requirements, user expectations, regulation
frameworks and generally advancements in telecommunications e.g.
transition to the next generation. Within those roadmaps there are many
important decisions, such as selection of software base line for the next
major release, selection of software units and subsystems for redesign (after
"stinker" analysis), testbed planning, release dates, all significantly
dependent on software quality. A general and simple model of quality,
constantly updated through time and different software life cycles phases
and processes, will be invaluable tool for business (operational and
strategic) planning and decision making.

A usable software quality model for managerial decision support
system in telecommunication (control) software industry should satisfy
majority of objectives and constraints that are reasonable to implement,
should be cost-effective and should provide feedbacks to software
development processes and impact analysis [2]. The common approach is to
extract desired software systems attributes/characteristics from a chosen
taxonomy (or software quality model) that optimally fits to the
requirements, domain, software system purpose and end users. [70] chosen
functionality, usability, reliability and efficiency from the ISO/IEC 9126
quality model and Bayesian Belief Network for their E-commerce systems
model concerning the quality.

There is an abundance of methods that deal with the various software
quality aspects, but most of them are related to some niche of product-based
view, such as maintainability and reliability. On the other hand, most
common practices in software industry deal with software quality related to
the functional requirements, while the non-functional requirements are
usually neglected. Gupta et al. classified techniques for building quality
models into algorithmic, such as regression analysis, and non-algorithmic,
such as probabilistic and soft computing [33]. The quality models building

39

techniques are also compared in terms of the following modelling
capabilities:

* Explaining outputs,

* Suitability for small data sets,

* Adjustability for new data,

* Visibility of reasoning process,

* Suitability for complex models,

* Inclusion of known facts.

The key difference between the larger and the small data sets is that the
larger data sets permit the use of non-linear statistical and neural network
models. The conclusions are that the techniques are suited either for
classification or prediction quality models and that there is no single
technique that fulfils all requirements: flexible, transparent and reusable
quality model. Case-based reasoning and fuzzy system modelling
techniques are seen as the most promising.

In quality modelling for telecommunications control software
development all capabilities listed above are desirable, except suitability for
small data sets.

In order to overcame the constraints and prerequisites of SRGMs, some
soft computing approaches and techniques are used. Soft computing
techniques are a family of problem solving approaches that tackles the
imprecise and uncertain real world problems by mimicking the biological
problem-solving already existing in nature. Plants, animals and human
beings exhibit flexible, adaptive and smart approaches to the real world
problems. The main members of the soft-computing techniques are [71]:

* Fuzzy system;

* Neural networks;

* Chaos theory;

* Evolutionary computing;
o Evolutionary algorithm
o Swarm intelligence

* Support Vector Machine (SVM);

* Bayesian network.

40

Soft computing techniques are used in many areas such as machine
learning and artificial intelligence applied in engineering.

The soft techniques are often used for assessment or to predict a single
notion of software quality or characteristic such as reliability and compete
against traditional SRGMs. There are also attempts to model the integral
software quality and all or subset of quality characteristics represented by
some integrated hierarchy models [72].

Wagner and Deissenboeck identified six different dimensions of
software quality modelling [73]:

* Purpose with three main types: Constructive, predictive and
assessing [4]

* View corresponding to five different approaches [5]

e Attribute (i.e. software characteristics)

* Phase (could be defined by the phases of the software product
life cycle)

* Technique (focus on a single technique e.g. system test)

* Abstractness (level of details).

* Definition models ISO/IEC 9126 as well as 25010 mix criteria
from different dimensions.

The quality definition models, at that time ISO/IEC 9126 and latter
OSI/IEC 25010, have failed to establish a broadly accepted definition of
quality because they mix criteria from different dimensions and the
characteristics are not sufficiently described in order to be assessable [73].
The authors recommended to use costs as measure for all quality related
attributes and mapping of desired software attributes or characteristics to
corresponding activities that could be assessed from economic point of view
and associated with some costs.

Moreover, costs certainly can serve as a common denominator for
integration of different quality assurance techniques and building a
model/framework for holistic approach to software quality during the whole
span of software product life cycle.

41

4.1 Software quality economics or cost approach

The value-based approach is certainly very important for industrial
software, where economic reasoning directly drives most management
decisions. If we look for a managerial software decision support based on
software quality, understanding of costs and benefits of software quality is
essential. The cost is one of the main parameters of software development
process along the quality and time.

Wagner proposes cost as an universal unit including quality due to two
primary reasons: most software projects are done by the companies driven
by profit and quality as a multifaceted concept needs some common
quantization or denominator [16]. The same author overviewed the results
of empirical studies about the efficiency of defect-detection techniques and
associates them with a model of software quality economics [74]. As
software quality assurance with defect-detection techniques is accounted for
almost half of development costs, the economics of software quality
assurance is highly important in practice. The understanding of the
economics is essential for managerial decision on how many testing are
enough and if the agreed level of quality is reached. Wagner also tried to
optimize the usage of defect-detection techniques (in which order they
should be applied and with what effort) [74]:

* Dynamic testing (executes software with the aim to find
failures)

* Reviews and inspections

* Static analysis tools (tool-based analysis of source code without
executing it).

Quality costs could be attributed to preventing, finding and correcting
software defects and failures and one possible classification is given in
Figure 11 [74].

42

cost of quality

conformance nonconformance

prevention costs appraisal costs internal failure external failure

A

setup execution fault removal effect

Figure 11 Overview of the costs related to quality [74]

The classification depicted in Figure 11 makes a distinction between
prevention, appraisal and failures costs and hence it is called PAF model.
The model is focused on reliability and as such is not completed and
exhausted e.g. there is no maintenance costs.

The Wagner’s quality economic model has three main costs: direct
costs, future costs and revenues or saved costs. Direct costs are directly
related to the application of the defect-detection techniques, the future costs
contain the incurred costs while revenues comprise saved costs.

The direct costs of defect-detection techniques A are defined as:

dy =uy +e,(0) + 2i(1 — 643, t)))va(d),

where u, are the setup costs, e,(t) are the execution costs of t long
application, 0, (i, t) is the probability that defect-detection technique A does
not detect error i when applied with effort t, and v (i) is the error removal
costs specific to technique A.

A metric used direct cost of defect-detection technique is the return on
investment:

Ror =X "% "%
dy + oy

describing the ratio between revenue decreased for costs and costs.

For practical purposes the model is simplified and errors/faults are
categorized in defect types, and defects types have specific distributions
regarding their detection difficulty, removal cost and failure probability.

43

4.2 Bayesian networks

Bayesian networks (BNs) are a modelling technique for causal
relationship based on Bayesian inference. They are also known as Bayesian
beliefs networks (BBNs) or just belief networks.

Basically, Bayesian inference mathematically describes how to change
existing beliefs with appearance of new data. It makes possible to combine
old knowledge with the new data. According to Bayes, observations should
be considered as dynamical influence on judgment. Bayes inference could
be drawn from the joint probability of events 4 and B, P(A4 A B):

P(AAB)=P(Ba A,
P(A4|B)P(B) = P(B| A)P(A),
P(B| A)P(A)

P(4]|B) = PB)

where are:
P(A) probability of hypothesis A4 (prior),
P(B) probability of new event B (evidence),
P(A| B) joint probability i.e. probability of 4 if B occurs (posterior),

P(B| A) joint probability of B after event 4 (likelihood).
Denominator P(B) could be further broken down as
P(B)=P(B|A)P(A)+ P(B|~ A)P(~ A)
and Bayes inference could be written as

P(B| A)P(A)

P(418) = P(B| A)P(A) + P(B |~ A)P(~ A)’

or more descripting as

likelihood x prior

posterior = -
evidence

In continuous domain the Bayes decision rule is:

P(a, | %) - p(x|w)P(@,)

p(x)

3

44

where:

X is a feature vector in ¢ domain,

w; 1s a finite set of ¢ possible states {wl,...,a)c },

p is a density probability function with f p(x)dx =1,
P is a probability within the range [0,1] with P(X) = 2 P(x)=1.

P(w) is an assumption or hypothesis that state @, will occur i.e. existing
system model. p(X|®,) is probability of state @, after a new, generally
known evidence x occurs. We are looking for the latest probability of state
w;, P(w, | X), after new evidence X . p(X) is usually called scaling factor.

The Bayesian network could be graphically represented as a directed
acyclic graph where vertices representing uncertain variables and edges
representing directed relationships between variables, Figure 12.

Number of
Field Failures

Code Testing

Complexity Effort

Figure 12 A simple Bayesian network [75]

Each vertex (node or variable) has a node probability table (NPT) that
defines the relationships and uncertainty for the variable. An example of a
NPT is shown in Figure 13.

45

Testing effort Low High

Code complexity Low Med. High Low Med. High

<100 0.4 0.3 0.2 0.6 0.55 0.5
>100 0.6 0.7 0.8 0.4 0.45 0.5

Figure 13 An NPT for variable Number of field failures |75]

The variables are usually discrete with a fixed number of states e.g.
variable Number of field failures has two states: below 100 and above 100.
For each state the NPT gives probability that the variable is in this state, but
different for each influence of existing parent nodes. In this example the
probability that the variable Number of field failures is below 100 failures is
0.2 where parent variables Testing effort is Low and Code complexity is
High.

The process of building a Bayesian network comprises identification of
important variables, representing them as nodes and connecting in a acyclic
directed graph respecting all mutual causalities, and specifying the node
probability tables (NPTs).

Fenton and Neil modelled software defects insertion and detection
process (Figure 14), [31, 76].

Problem Complexit Defects Introduced Design Effort

Testing Effort Defects Detected Residual Defects

Operational usage Operational defects,

Figure 14 Simplified Bayesian network for predicting pre-release defects and post-release
failures [31]

The Bayesian network depicted in Figure 14 and related node
probability tables are based on a mixture of empirical data and expert

46

judgements. The approach using Bayesian networks besides dealing with
causality and uncertainty also allows introducing and combining different,
often subjective and elusive, evidences.

The BN approach is also applied to resource modelling and prediction
[76], Figure 15.

Complexity
Functionalit . Functionality) i
MY Problem size Solution size
Problem size
Proportion
Required implemented
Quality of staff, resources
tools
Required duration
Required effort
Actual A . Solution
ppropriateness . reliabilit
effort/schedule | " of actual Solution ety
quality
resources

Figure 15 Causal BN model for software resources [76]

The boxes in Figure 15 represent actually subnets. Each of the subnets
contains variables e.g. problem size subnet comprises complexity and
functionality while subnet appropriateness of actual resources comprise
required duration and efforts, actual effort and duration. The latter subnet is
important and distinguishing because it through cause-effect relationships
challenges the required resources as a best practice estimation by actual
efforts and schedule.

Fenton brings more general approach that allows BNs to predict defects
along the whole software lifecycle [77]. Previous approach required
different and customized BNs for each process due to availability of
different metrics. Marquez introduced hybrid BNs containing both discrete
and continuous variables for reliability modeling [78].

Software quality or at least some characteristics such as reliability and
maintainability [79] may be justifiably predicted by a Bayesian network due
to its ability to combine many different sources of evidences such as test
result and process information. Such a BBN could also be useful for
examination of various trade-offs, but will not be sufficient for managerial

47

decision reliable support. [31, 80] recommended multi criteria decision
aid/making (MCDA/M) for inclusion of other relevant criteria concerning
software product such as time, cost and company policy.

4.3 Multi Criteria Decision Making

Multiple-criteria decision analysis (MCDA) or multiple-criteria
decision-making (MCDM) is a part of operations research discipline that
explicitly considers multiple criteria in decision-making environments.
Some criteria are usually in conflict e.g. cost and quality, and to bring more
informed and qualified decision, complex problem shall be structured well
and multiple criteria explicitly considered. One of the main efforts of
MCDM research is finding a way of trading off between criteria.

The modern multiple-criteria decision-making discipline started in the
early 1960s. There are different MCDM problems and methods. The main
classification of MCDM problems is based on solution definitions:

* Multiple-criteria evaluation problem: a problem consists of a finite
numbers of solutions known in advance. The problem is either to
find the best alternative or to sort solutions.

* Multiple-criteria design problem: solutions are not explicitly
known. A solution can be found by solving a mathematical model.

Different approaches and methods have been developed for solving
MCDM problems of both types. The principal MCDM approach is multi-
attribute utility theory (MAUT). Another popular approaches are [81, 82]:

* Fuzzy sets to model and solve fuzzy problems

* Evolutionary Multi-Objective Optimization (EMO)

* Analytic Hierarchy Process (AHP)

Since the introduction of MCDM, a variety of methods have been
introduced for application in different disciplines such as politics, business
and environment. Applications of multiple-criteria decision-making have
started to be considered also for applications in software engineering [83].
Stamelos and Tsoukias used a multi-criteria model to evaluate the quality of
software [84]. Ruhe et al. prioritize software requirements by use of the
Analytical Hierarchy Process (AHP) [3]. Chang et al. propose Fuzzy
Analytic Hierarchy Process (FAHP) combining the Analytic Hierarchy

48

Process (AHP) multiple-criteria decision-making method for resolving and

fuzzy theory [69].
Kornyshova proposes use of multi-criteria methods in software

engineering in three steps [80]:
* Structuring specific decision-making situation,
* Considering decision-making situation specificity,
* Application of multi-criteria method adapted to this concrete
situation.

49

5 Conclusion and future work

The foreseen goal is a managerial decision support system with focus
on software quality. Although the emphasis will be on software quality, all
related software engineering aspects are analysed in order to come closer to
a trustable managerial support system. Such system should tackle the whole
software life cycle, using also the historic data, to get some solid indicators
as soon as possible and to leave space and time for using feedback for
improvements and corrections of software development process. The
software quality itself should be modelled by following the goal-question-
metric (GCM) approach [55]. Another requirement on the software quality
model is causality relationships between metric and final goals, which will
provide root cause analysis and feedbacks for managerial decisions and
actions on source code ground. The software quality model is also
constrained by mathematical or statistical ground. Other constraints are
industry and particularly telecommunication control software industry best
practices, already existing metrics and measurements and its collection,
applied development process (these days mostly agile and Scrum
development processes) and software development project management.

The appropriate software quality model or more models should be built.
A sound choice for the start is a software definition model i.e. a common
taxonomy that will facilitate communication and negotiations on software
quality issue. The ISO/IEC 25010 looks as best choice because it is an
international standard accepted by the all important standardization
organization, it is new and based on the previous, hierarchical software
quality models. The ISO/IEC 25010 quality definition model main quality
characteristics and sub-characteristics are overlapping and define software
quality in different dimensions [73], so the next step could be selection of
quality characteristics that are orthogonal to some extent and can catch the
product, user, manufacturing and value notions of software quality [5]. The
selection of such characteristics could start with reliability, maintainability
and usability characteristics. The selected characteristics will drive selection
of appropriate metrics. Above such definition model, an assessment and
prediction model layers can be built. The prediction power of model can be

50

facilitated by causal modelling and deploying of Bayesian Belief Networks
that could deal with uncertainties.

To put everything in a broader context of a managerial decision support
system for software development, costs could serve as a common measure
for different properties and characteristics of software quality and multiple-
criteria decision-making could serve as a high-level integration framework.
Such theoretical and scientifically grounded model could then be tailored
and customized and verified by using real telecommunication industry data
as a practical managerial decision support system for management of
software projects in telecommunications domain.

51

References

[1]

(2]

(3]

(4]

[3]

[6]

[7]
[8]
[9]

[10]

[11]

[12]

[13]

N. E. Fenton and M. Neil, "Software metrics: successes, failures and
new directions," Journal of Systems and Software, vol. 47, pp. 149-
157, 1999.

G. Ruhe, "Software Engineering Decision Support—-Methodology
and Applications," Innovations in decision support systems, vol. 3,
pp. 143-174, 2003.

G. Ruhe, A. Eberlein, and D. Pfahl, "Quantitative WinWin: a new
method for decision support in requirements negotiation," in
Proceedings of the 14th international conference on Software
engineering and knowledge engineering, 2002, pp. 159-166.

F. Deissenboeck, E. Juergens, K. Lochmann, and S. Wagner,
"Software quality models: Purposes, usage scenarios and
requirements," in Software Quality, 2009. WOSQ'09. ICSE
Workshop on, 2009, pp. 9-14.

D. A. Garvin, "What does product quality really mean," Sloan
management review, vol. 26, 1984.

V. A. Shekhovtsov, "On the evolution of quality conceptualization
techniques," in The evolution of conceptual modeling, 2011, pp. 117-
136.

B. Kitchenham and S. L. Pfleeger, "Software quality: The elusive
target," IEEE software, vol. 13, pp. 12-21, 1996.

S. GROUP, "The CHAOS Manifesto-Think Big, Act Small, last
accessed on 27 June, 2014," 2013.

C. Cachero, C. Calero, and G. Poels, "Metamodeling the quality of
the web development process’ intermediate artifacts," in Web
Engineering, ed: Springer, 2007, pp. 74-89.

R. C. De Boer and H. Van Vliet, "QuOnt: an ontology for the reuse
of quality criteria," in Sharing and Reusing Architectural
Knowledge, 2009. SHARK'09. ICSE Workshop on, 2009, pp. 57-64.
S. Wagner, "Cost optimisation of analytical software quality
assurance," 2007.

C. Andersson and P. Runeson, "A replicated quantitative analysis of
fault distributions in complex software systems," Software
Engineering, IEEE Transactions on, vol. 33, pp. 273-286, 2007.

T. Galinac Grbac, P. Runeson, and D. Huljeni¢, "A second replicated
quantitative analysis of fault distributions in complex software
systems," Software Engineering, IEEE Transactions on, vol. 39, pp.
462-476, 2013.

52

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

N. E. Fenton and N. Ohlsson, "Quantitative analysis of faults and
failures in a complex software system," Software Engineering, IEEE
Transactions on, vol. 26, pp. 797-814, 2000.

K.-Y. Cai and B.-B. Yin, "Software execution processes as an
evolving complex network," Information Sciences, vol. 179, pp.
1903-1928, 2009.

S. Wagner, "Using economics as basis for modelling and evaluating
software quality," 1in Proceedings of the First International
Workshop on The Economics of Software and Computation, 2007, p.
2.

F. P. Brooks and N. S. Bullet, "Essence and accidents of software
engineering," IEEE computer, vol. 20, pp. 10-19, 1987.

K. El Emam and A. G. Koru, "A replicated survey of IT software
project failures," Software, IEEE, vol. 25, pp. 84-90, 2008.
ISO/IEC/IEEE-15288, "ISO/IEC/IEEE 15288:2015(E) Systems and
software engineering - System life cycle processes," ed: International
Standards Organisation, IEC, IEEE, 2015.

J. Boegh, "A New Standard for Quality Requirements," [EEE
Software, vol. 25, pp. 57-63, 2008.

ISO/IEC-12207, "ISO/IEC 12207:2008(en) Systems and software
engineering - Software life cycle processes," ed: International
Standards Organisation, IEC, 2008.

ISO-9001, "ISO 9001:2008(en) Quality management systems -
Requirements," ed: ISO, 2008.

C. P. Team, "CMMI for Development, Version 1.3 (CMU/SEI-
2010-TR-033). Software Engineering Institute," ed: Carnegie Mellon
University, 2010.

A. Kovécs and K. Szabados, "Test software quality issues and
connections to international standards," Acta Universitatis
Sapientiae, Informatica, vol. 5, pp. 77-102, 2013.

G. Coleman and R. Verbruggen, A quality software process for rapid
application development: Springer, 1998.

J. Li, N. B. Moe, and T. Dybé, "Transition from a plan-driven
process to scrum: a longitudinal case study on software quality," in
Proceedings of the 2010 ACM-IEEE international symposium on
empirical software engineering and measurement, 2010, p. 13.

J. Sutherland, C. R. Jakobsen, and K. Johnson, "Scrum and cmmi
level 5: The magic potion for code warriors," in Hawaii
International Conference on System Sciences, Proceedings of the
41st Annual, 2008, pp. 466-466.

53

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

M. Huo, J. Verner, L. Zhu, and M. A. Babar, "Software quality and
agile methods," in Computer Software and Applications Conference,
2004. COMPSAC 2004. Proceedings of the 28th Annual
International, 2004, pp. 520-525.

M. Fowler and J. Highsmith, "The agile manifesto," Software
Development, vol. 9, pp. 28-35, 2001.

A. Begel and N. Nagappan, "Usage and perceptions of agile software
development in an industrial context: An exploratory study," in
Empirical Software Engineering and Measurement, 2007. ESEM
2007. First International Symposium on, 2007, pp. 255-264.

N. E. Fenton and M. Neil, "Software metrics: roadmap," in
Proceedings of the Conference on the Future of Software
Engineering, 2000, pp. 357-370.

T. M. Khoshgoftaar and N. Seliya, "Comparative assessment of
software quality classification techniques: An empirical case study,"
Empirical Software Engineering, vol. 9, pp. 229-257, 2004.

D. Gupta, H. K. Mittal, and V. Goyal, "Comparative Study of Soft
Computing Techniques for Software Quality," International Journal
of Software Engineering Research and Practices, vol. 1, pp. 33-37,
2011.

J. Tian, "Quality-evaluation models and measurements," Software,
IEEE, vol. 21, pp. 84-91, 2004.

A. Wood, "Software reliability growth models," Tandem Technical
Report, vol. 96, 1996.

N. Bridge and C. Miller, "Orthogonal defect classification using
defect data to improve software development," Software Quality,
vol. 3, pp. 1-8, 1998.

L. Huang, V. Ng, I. Persing, R. Geng, X. Bai, and J. Tian,
"AutoODC: Automated generation of orthogonal defect
classifications," in Automated Software Engineering (ASE), 2011
26th IEEE/ACM International Conference on, 2011, pp. 412-415.

A. L. Goel, "Software reliability models: Assumptions, limitations,
and applicability," Software Engineering, IEEE Transactions on, pp.
1411-1423, 1985.

R. E. Al-Qutaish, "Quality models in software engineering literature:
an analytical and comparative study," Journal of American Science,
vol. 6, pp. 166-175, 2010.

S. Fahmy, N. Haslinda, W. Roslina, and Z. Fariha, "Evaluating the
Quality of Software in e-Book Using the ISO 9126 Model,"

54

[41]

[42]

[43]
[44]
[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

International Journal of Control and Automation, vol. 5, pp. 115-
122, 2012.

J. A. McCall, P. K. Richards, and G. F. Walters, "Factors in software
quality. volume 1. concepts and definitions of software quality,"
DTIC Document1977.

B. W. Boehm, J. R. Brown, and M. Lipow, "Quantitative evaluation
of software quality," in Proceedings of the 2nd international
conference on Software engineering, 1976, pp. 592-605.

B. W. Boehm, J. R. Brown, and H. Kaspar, "Characteristics of
software quality," 1978.

R. B. Grady, Practical software metrics for project management and
process improvement: Prentice-Hall, Inc., 1992.

ISO/IEC-9126, "ISO/IEC 9126-1:2001 Software engineering --
Product quality -- Partl: Quality model," ed: ISO/IEC, 2001.

G. R. Dromey, "A model for software product quality," Software
Engineering, IEEE Transactions on, vol. 21, pp. 146-162, 1995.
H.-W. Jung, S.-G. Kim, and C.-S. Chung, "Measuring software
product quality: A survey of ISO/IEC 9126," IEEE software, pp. 88-
92, 2004.

ISO/IEC-25000, "ISO/IEC 25000:2014 Systems and software
engineering - Systems and software Quality Requirements and
Evaluation (SQuaRE) - Guide to SQuaRE," ed: ISO, IEC, 2014.

P. Parmakson, "Alignment of software quality and service quality,"
in Advanced Information Systems Engineering, 1995, pp. 355-365.

I. Castillo, F. Losavio, A. Matteo, and J. Beaegh, "REquirements,
Aspects and Software Quality: the REASQ model," Journal of
Object Technology, vol. 9, pp. 69-91, 2010.

I. Heitlager, T. Kuipers, and J. Visser, "A practical model for
measuring maintainability," in Quality of Information and
Communications Technology, 2007. QUATIC 2007. o6th
International Conference on the, 2007, pp. 30-39.

D. Coleman, D. Ash, B. Lowther, and P. Oman, "Using metrics to
evaluate software system maintainability," Computer, vol. 27, pp.
44-49, 1994,

M. H. Halstead, Elements of Software Science (Operating and
programming systems series): Elsevier Science Inc., 1977.

D. Radjenovi¢, M. Hericko, R. Torkar, and A. Zivkovié, "Software
fault prediction metrics: A systematic literature review," Information
and Software Technology, vol. 55, pp. 1397-1418, 2013.

55

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]
[66]

[67]

V. R. Basili, "Software modeling and measurement: the
Goal/Question/Metric paradigm," 1992.

K. Mordal, N. Anquetil, J. Laval, A. Serebrenik, B. Vasilescu, and S.
Ducasse, "Software quality metrics aggregation in industry," Journal
of Software: Evolution and Process, vol. 25, pp. 1117-1135, 2013.

B. Vasilescu, A. Serebrenik, and M. van den Brand, "By no means:
A study on aggregating software metrics," in Proceedings of the 2nd
International Workshop on Emerging Trends in Software Metrics,
2011, pp. 23-26.

P. Oman and J. Hagemeister, "Construction and testing of
polynomials predicting software maintainability," Journal of
Systems and Software, vol. 24, pp. 251-266, 1994.

A. Janes, M. Scotto, W. Pedrycz, B. Russo, M. Stefanovic, and G.
Succi, "ldentification of defect-prone classes in telecommunication
software systems using design metrics," Information sciences, vol.
176, pp. 3711-3734, 2006.

E. Arisholm, L. C. Briand, and E. B. Johannessen, "A systematic and
comprehensive investigation of methods to build and evaluate fault
prediction models," Journal of Systems and Software, vol. 83, pp. 2-
17, 2010.

M. R. Lyu, Handbook of software reliability engineering vol. 222:
IEEE computer society press CA, 1996.

V. Zeljkovi¢, N. Radovanovi¢, and D. Ili¢, "Software reliability:
Models and parameters estimation," Scientific Technical Review,
vol. 61, pp. 57-60, 2011.

K. M. Faqih, "What is Hampering the Performance of Software
Reliability Models? A literature review," in International
MultiConference of Engineers and Computer Scientists, 2009.

Y. S. Su, C.-Y. Huang, Y. S. Chen, and J. X. Chen, "An artificial
neural-network-based approach to software reliability assessment,"
TENCON 2005 2005 IEEE Region 10, pp. 1-6, 2005.

A. M. Neufelder, Ensuring software reliability: CRC Press, 1992.

S. S. Gokhale, P. N. Marinos, and K. S. Trivedi, "Important
milestones in software reliability modeling," in SEKE, 1996, pp.
345-352.

L. Shanmugam and L. Florence, "A comparison of parameter best
estimation method for software reliability models," International
Journal of Software Engineering & Applications, vol. 3, pp. 91-102,
2012.

56

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

C. Zheng, X. Liu, S. Huang, and Y. Yao, "A Parameter Estimation
Method for Software Reliability Models," Procedia Engineering,
vol. 15, pp. 3477-3481, 2011.

C.-W. Chang, C.-R. Wu, and H.-L. Lin, "Integrating fuzzy theory
and hierarchy concepts to evaluate software quality," Software
Quality Journal, vol. 16, pp. 263-276, 2008.

A. Stefani, M. Xenos, and D. Stavrinoudis, "Modelling e-commerce
systems' quality with belief networks," in Virtual Environments,
Human-Computer Interfaces and Measurement Systems, 2003.
VECIMS'03. 2003 IEEE International Symposium on, 2003, pp. 13-
18.

K. Kaswan, S. Choudhary, and K. Sharma, "Software Reliability
Modeling using Soft Computing Techniques: Critical Review," J
Inform Tech Softw Eng, vol. 5, p. 2, 2015.

H. Yang, "Measuring Software Product Quality with ISO Standards
Base on Fuzzy Logic Technique," Affective Computing and
Intelligent Interaction, pp. 59-67, 2012.

S. Wagner and F. Deissenboeck, "An integrated approach to quality
modelling," in Proceedings of the 5th International Workshop on
Software Quality, 2007, p. 1.

S. Wagner, "A literature survey of the quality economics of defect-
detection techniques," in Proceedings of the 2006 ACM/IEEE
international symposium on Empirical software engineering, 2006,
pp. 194-203.

S. Wagner, "A Bayesian network approach to assess and predict
software quality using activity-based quality models," Information
and Software Technology, vol. 52, pp. 1230-1241, 2010.

N. Fenton and M. Neil, "Software metrics and risk," in Proc 2nd
European Software Measurement Conference (FESMA'99), TI-
KV1V, Amsterdam, ISBN, 1999, pp. 90-76019.

N. Fenton, M. Neil, W. Marsh, P. Hearty, D. Marquez, P. Krause, et
al., "Predicting software defects in varying development lifecycles
using Bayesian nets," Information and Software Technology, vol. 49,
pp- 32-43, 2007.

D. Marquez, M. Neil, and N. Fenton, "Improved reliability modeling
using Bayesian networks and dynamic discretization," Reliability
Engineering & System Safety, vol. 95, pp. 412-425, 2010.

C. Van Koten and A. Gray, "An application of Bayesian network for
predicting object-oriented software maintainability," Information
and Software Technology, vol. 48, pp. 59-67, 2006.

57

[80]

[81]

[82]

[83]

[84]

E. Kornyshova, R. Deneckére, and C. Salinesi, "Using Multicriteria
Decision-Making to Take into Account the Situation in System
Engineering," in CAISE'0S forum, 2008, p. 25.

M. Grabisch, "The application of fuzzy integrals in multicriteria
decision making," European journal of operational research, vol.
89, pp. 445-456, 1996.

J. Bragge, P. Korhonen, H. Wallenius, and J. Wallenius,
"Bibliometric ~ analysis = of multiple criteria decision
making/multiattribute utility theory," in Multiple criteria decision
making for sustainable energy and transportation systems, ed:
Springer, 2010, pp. 259-268.

A. Barcus and G. Montibeller, "Supporting the allocation of software
development work in distributed teams with multi-criteria decision
analysis," Omega, vol. 36, pp. 464-475, 2008.

I. Stamelos and A. Tsoukias, "Software evaluation problem
situations," European Journal of Operational Research, vol. 145,
pp. 273-286, 2003.

58

