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EFFICIENT PARAMETERIZATION METHODS FOR GENERIC 

SHAPE OPTIMIZATION WITH ENGINEERING APPLICATIONS 

 

 

Abstract 

Engineering optimization very often includes complex and computationally expensive 

numerical simulations with time requirements ranging from few seconds to months per single 

simulation, depending on the simulated physics and available computational resources. Such 

optimization tasks should therefore contain no more than a small yet sufficient number of 

optimization variables. Additional difficulties arise when the underlying physics has nonlinear 

character modeled by nonlinear partial differential equations. The most common cases of 

engineering optimization involving computationally very expensive nonlinear simulation 

include problems in computational fluid dynamics. Furthermore, technical objects considered 

in fluid dynamics (ship hulls, wind-turbines or fan blades,…) are almost always complex 

three-dimensional shapes that cannot adequately be described with only a few shape variables.  

The most commonly used tools for generic shape representation are non-uniform 

rational basis spline (NURBS) curves and surfaces. NURBS surfaces can be used as mutually 

connected patches when the shape is too complex to be represented by a single NURBS 

surface. In recent years, a generalization of NURBS called T-splines is becoming increasingly 

more used.  The objective of this doctoral qualifying exam is to review these and other 

currently available methods of generic shape parameterization and evaluate possibilities of 

integration with engineering optimization tasks related to computational fluid dynamic. 
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METODE UČINKOVITE PARAMETRIZACIJE ZA GENERIČKO 

OPTIMIRANJE OBLIKA S INŽENJERSKIM PRIMJENAMA 

 

Kratki sažetak 

Inženjerska optimizacija često sadržava složene i računalno skupe numeričke 

simulacije s računalnim vremenskim zahtjevima od nekoliko sekundi do nekoliko mjeseci po 

simulaciji, ovisno o simuliranoj fizici i dostupnim računalnim resursima. Ovakvi 

optimizacijski zadaci stoga ne mogu sadržavati nego mali broj optimizacijskih varijabli. 

Dodatne teškoće nastaju kada ju problem opisan nelinearnim parcijalnim diferencijalnim 

jednadžbma. Primjer inženjerske optimizacije s računski zahtjevnim simulacijama i 

nelinearnim modelima vrlo često uključuju računalnu dinamiku fluida. Uz sve navedeno, 

tehnički objekti u dinamici fluida (trup broda, lopatice vjetro-turbine ili ventilatora,…) često 

su kompleksni trodimenzionalni oblici koji se ne mogu adekvatno opisati s malim brojem 

varijabli oblika.  

Najčešće korišteni alati za zapis generičkih krivulja i ploha su ne-uniformni racionalni 

bazni spline (NURBS). Plohe se mogu zapisati pomoću više NURBS ploha spojenih po 

dijelovima kada je oblik presložen da bi se opisao s pojedinačnom NURBS plohom, a 

posljednjih godina se u te svrhe koristi i generalizacija NURBSa takozvani T-spline. Cilj ovog 

kvalifikacijskog doktorskog ispita je napraviti pregled metoda generičke parametrizacije 

oblika u sklopu njihove integracije u probleme inženjerske optimizacije na primjeru računalne 

dinamike fluida. 
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1. INTRODUCTION 

Shape optimization (SO) is a rather complex undertaking which involves many 

challenges but  nevertheless becomes a necessity in several industries [1].  SO is a part of 

computational mechanics and can be subdivided in three branches: sizing optimization (for 

example thickness distribution), shape optimization itself and topology optimization [2]. This 

qualifying doctoral exam will focus on engineering application of shape optimization itself, 

but variable shape topology will also be considered.   

In SO, the system subject to optimization is usually described by partial differential 

equations (PDEs). In recent years, the field of optimization of systems based on PDEs has 

received a large impulse with a variety of research projects being funded by national and 

international agencies [3], [4]. In engineering application of SO, the optimization problems 

usually contain multiple mutually exclusive objectives functions, modeled by very different 

computational methods.  This causes difficulties in engineering applications of methods 

developed specially for solving a specific type of PDEs. This doctoral qualifying exam gives a 

review of methods required for generic engineering SO of complex engineering systems. 

  A common example of complex engineering optimization tasks includes 

computational fluid dynamics (CFD), a system modeled by (nonlinear) PDEs.  Concerning 

CFD, the first applications of optimization are found for aeronautical problems, in particular to 

improve wing profile and flight properties (typically, reduce drag) [5].  CFD models are a 

major concern as appropriate turbulence models and domain discretization exhibit a major 

influence on the simulation results and require substantial computing resources. These tasks 

also include complex 3D shapes such as ship hulls, wind-turbine blades, fan vanes, etc. 

Computational modeling of the respective geometry is correspondingly difficult as modeling 

of both global and local variations of shape is required. Furthermore, only a modest-size data-

set of shape parameters has to be used, since otherwise the dimensionality of the subsequent 

optimization space is very high. The most often solution to solving these problems is to apply 

local SO while keeping most of the 3D shape fixed i.e. ignoring the global character.  In any 

case, an integrated optimization workflow must be constructed to contain (at least) a geometry 

modeler and an engineering simulation node controlled by the optimizer. A typical 

engineering optimization workflow is illustrated in Figure 1. 

This doctoral qualifying exam gives a review of methods that can increase the 

efficiency of engineering SO problems. Particularly, consideration is given to the application 

of CFD within an integrated optimization workflow since these tasks present are the most 

computationally demanding, consequently there exists a large potential of improvement exists. 

Methods for both global and local variations of shape will be investigated. First a layout of 

various parameterization methods and an overview with comparison between the methods is 

given. Parametric shape fitting is considered important for testing of parameterizations on 

existing shapes (point-cloud) as this way a parameterization can be tested geometrically 

without including computationally expensive numerical simulation. For multi-patch 
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parameterization methods, feature detection methods are applied to 3D point cloud to improve 

fitting performance. The major part of the doctoral qualifying exam is concerned with 

geometry modeling since much research is currently directed towards geometry modeling 

methods and universal approach does not exist. After all important aspects of geometry 

modeling are considered a layout of CFD is given. It is important to understand the physical 

principles and engineering models used in the engineering simulation node of the workflow. 

Without an efficient numerical simulation, and parameterization method (no matter how well 

selected) will not be able to show its full potential.  The optimizer controlling the shape 

variations within the numerical workflow is also a major concern. Depending on optimization 

problem, a different optimization algorithm (genetic algorithm, gradient method,…) ,pre 

appropriate. For example a gradient method will not be able to not improve the solution in the 

case of a “noisy” objective function. An opposing case would be the case of local optimization 

with a smooth objective function where a genetic algorithm will eventually obtain a solution 

but the application of a gradient method can save orders of magnitude of computational time. 

Numerical methods in combination with powerful computers have enabled the 

designers to create various design tools based on optimization algorithms.  Numerical 

integration of the above elements in the form of a workflow is not trivial as it needs to 

encapsulate both process flows with synchronization of processes and the necessary data-

mining. The data transfers within the workflow include results for all candidate designs. On 

the input side of the engineering simulations (CFD,…), the current shapes of the candidate 

designs need to be communicated to the simulators (‘data-burying’). As the engineering object 

generally functions across a range of operating regimes, a good definition of the excellence 

criteria is also crucial. Moreover, the design variables may include additional parameters 

beyond those which control the shape, including discrete variables. Some of the variables can 

be given only as statistical making the problem even more difficult. A schematic of a general 

workflow s is illustrated, Figure 1. Corresponding data mining is represented with vertical 

direction while the coordination of process is represented by horizontal direction.  

 

 
Figure 1. Typical multidisciplinary shape optimization workflow with CFD simulator. 
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A generic engineering SO task has the following elements: 

1. For an engineering object and corresponding operating conditions the objectives and 

constraints have to be defined; 

2. Numerical simulations are conducted (and developed) to confirm that the computer 

model is able to replicate reality for the required operating conditions. Typically 

multiple test cases are conducted and compared with experimental results; 

3. Fine tuning of the numerical simulation to improve the computational efficiency and 

keep the required accuracy; 

4. Real-life solutions of a similar problem already exist, but they are not optimal for a 

particular optimization objective.  The shape of the pre-existing solutions can be used 

as a starting point of SO task.  If the geometry file is not available, 3D optical scanning 

can be used to provide the point cloud representing the initial shape; 

5. Parameterization of the 3D point cloud into computational geometry entities (NURBS, 

T-spline,…) provides for optimization parameters. Fitting procedures can be used to 

evaluate the performance of parameterization and in this way the most appropriate 

shape parameterization procedure can be selected; 

6. Definition of the excellence criteria and objective functions for the optimizer such that 

the fitness functions for the candidate designs can be evaluated. In the case of multi-

regime operation, numerical sample of operating regimes has to be generated in order 

to evaluate excellence; 

7. Definition of the optimization constraints. Common example is setting bounds for the 

selected parameterization control point mobility. Further constraints can be related to 

non-shape variables (mass, stress, temperature, revolution velocity, etc.). 

8. Initial solution or a set of initial solutions based on the selected parameterization is 

generated; 

9. Launching the optimizer with corresponding operators and parameter values. Most 

often a genetic algorithms- based optimizer is selected. This requires a setup of 

selection operators, cross-over operators and probabilities, mutation, elitism, fitness 

scaling, etc; 

10. Linking an array of engineering simulators to provide values of excellence and 

constraints for all candidate designs represented by corresponding shape 

parameterization.  

11. Iteratively shape-optimizing the numerical object within the numerical cycle 

embedding the optimizer, shape modeler and engineering simulators (CFD, etc.). 

Elements of the engineering SO tasks (3), (5) and (9) have the most potential to be 

improved and a review of the existing solutions was given in this doctoral qualifying exam. 

The focus was mainly put on step (5) since new emerging shape parameterization and fitting 

procedures are not yet sufficiently tested in the context of generic shape engineering 

optimization hence leaving room for improvement.  
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2. NUMERICAL OPTIMIZATION 

All of the components of the optimization task can be integrated in a single numerical 

workflow controlled by the optimizer based on the selected optimization methods. After the 

initial solution is selected (based on earlier designs or randomly generated), the direction of 

the shape modification is controlled by the selected optimization algorithm. The result of the 

engineering optimization task is of course primarily dependent on the selected optimization 

method. This chapter will briefly describe important optimization methods and when is it 

appropriate to apply one or the other since no single superior approach exists. Further 

improvements that could improve the convergence speed of numerical optimization are also 

briefly described, for example a surrogate model can be introduced in the optimization 

workflow.  

Engineering SO problems usually belong to class of continuous nonlinear multi-

objective optimization (MOO) although discrete variables can be present. Methods for solving 

continuous MOO problems can be roughly divided in methods relying on standard 

optimization engines (single-objective optimization methods) such as gradient methods, and 

other approaches such as genetic algorithms [6]. When discrete variables are present in a 

MOO problem, genetic algorithms represent an appropriate and robust but computationally 

more demanding method. Since this doctoral qualifying exam will focus mainly on shape 

parameterization methods, this chapter will conduct a basic review of optimization methods. 

2.1. Classical single-objective optimization 

In classical optimization, the problem with which this review is concerned is that of 

determining the values of a set of parameters  x1, x2,… xn,  called the independent variables of 

the problem, which correspond to the minimum of a given objective function ( )f x . This 

problem can be written as: 

 

Minimize ( )

( ) 0,         1,2,...
Subject to

( ) 0,        1,2,...,



   
 

   

n

j

l

f

g j m

h l e

x

x

x

x

 (1) 

 

where m is the number of inequality constraints, and e is the number of equality 

constraints.  n
x  is a vector of design variables, where n is the number of independent 

variables xi. The point *ix  minimizes the objective function ( )f x . 

2.1.1. Unconstrained optimization 

Many of the methods used for constrained optimization deal with the constraints by 

converting the problem in some way into an unconstrained one. In the classical approach, 

analytically, a stationary point of a function ( )f x  is defined to be the one where all of the first 

partial derivatives of the function with respect to the independent variables are zero: 
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( )

0, 1,2,...,


 
 i

f
i n

x

x
 (2) 

Hence the problem could be solved by differentiating the objective function with 

respect to each of the variables in turn and setting them to zero, which would yield n equations 

and n unknowns to be solved for the stationary points. Since this is usually not possible, 

various numerical optimization techniques were developed as described in chapter 2.3. 

2.1.2. Constrained optimization 

The classical method of solving the constrained optimization problem uses Lagrangian 

multipliers to convert the problem into an unconstrained one. To incorporate the constraints in 

one equation, inequality constraints are first converted to equality. The Lagrange function L  

can be written as:  

 1 2

1

( , , ,..., ) ( ) ( )   


 
m

m k k

k

f gx x xL  (3) 

where 
1 2, ,...,  m

 are the Lagrange multipliers.  The optimal solution is the stationary 

point (saddle-point) of the Lagrange function: 

 ( , ) 0 * *
xL   (4) 

The problem with Lagrange method is that finding a saddle-point can be even more 

difficult to solve than the original constrained problem. So other methods (such as penalty 

method) are usually used for practical optimization problems when constrained optimization is 

converted to unconstrained.  

2.2.  Multi-objective optimization 

Most engineering optimization problems involve multiple excellence criteria. Single-

objective optimization is a special case with number of objective functions equal to one. By 

generalization of (1), a general multi-objective problem can be posed: 

 

 1 2Minimize ( ) = ( ), ( ), ..., ( )

( ) 0,         1,2,...
Subject to

( ) 0,        1,2,...,

   
 

   

T

k

j

l

F F F

g j m

h l e

x
F x x x x

x

x

 (5) 

 

where k is the number of objective functions, ( ) k
F x  is a vector of objective 

functions 
1( ) : n

iF x . ( )iF x  are the objective functions, whereby individual function is a 

mapping from the design space to single objective space.  The gradient of a function ( )iF x  

with respect to x  is written as ( )  n

iFx x . The point *ix  minimizes the objective function 

( )iF x .  The feasible design space X is defined as the set { ( ) 0, 1,2,... ; ig i mx | x and

( ) 0,  1,2,...,    } ih i ex .  Each point in the design space maps to a point in criterion space, but 

every point in the criterion space does not necessarily correspond to a single point in design 

space. 
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For single objective functions, k=1 and the minimum of 1( *)iF x where *ix is subset of 

X  and the solution of the optimization problem. In comparison to single-objective 

optimization, with multi-objective problems solution cannot be defined uniquely.  The optimal 

solution can be regarded more as a concept than as a definition. The principal concept in 

defining an optimal point is that of Pareto optimality, which is defined as follows: 

A point, *x X , is Pareto optimal if there does not exist another point, x X , such 

that ( ) ( *)F x F x and ( ) < ( *)i iF Fx x for at least one function.  

In case of maximization problems, the Pareto optimal designs are illustrated in the 

objective space in Figure 2.  In this case, the objective is usually multiplied by minus one so 

that the earlier definitions do not need to be modified.  

 
Figure 2. Pareto front. 

2.3. Gradient and direct search methods 

Gradient based methods are efficient methods for continuous nonlinear single-

objective problems; they require both the optimization function and its derivative.  To extend 

them to multi-objective optimization several approached exist, but all require a model of 

decisionmaker’s preferences (ordering or relative importance of objectives and goals) [6].  

Gradient methods can also be used for final fine-optimization after the relatively slow but 

robust genetic algorithm reaches a near-optimal solution. Gradient methods can also be used 

for efficient shape fitting in order to test the shape parameterization on existing designs.  

Since the derivative of the function is usually not available, it can be numerically 

evaluated or alternatively direct search (value-based) methods could be used. In the direct 

search methods, only values of the function to be minimized are used. If the solution is 

constrained, i.e. if certain limits of values (or relations between the values) of the parameters 

must be obeyed, the problem is more difficult. One approach is representing the amount of 

constraint violation by a penalty function and adding it to original function. For equality 

constraints, the penalty function is usually selected as 
2( ) l lPF c h x  while for inequality 
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constraints 
2max(0, ( )) j jPF c g x  where c is arbitrarily selected constant.  Now we need to 

solve the minimum of the expanded objective function ( )F x : 

 

 
2 2( ) ( ) ( ) max(0, ( ))     l j

l j

F F c h gx x x x  (6) 

   

Both the gradient based and the direct search methods are iterative and starting from an 

initial approximation x
0
 to the minimum they proceed by defining a sequence of points {x

i
}, i= 

1,2, . .., in such a way that: 

 

 
1( ) < ( )i iF Fx x  (7) 

   

This series of improved approximations {x
i
 } may be considered to be generated by the 

general iterative equation 

 

 1  i i i ihx x d  (8) 

   

where h
i
 is a positive constant and d

i
 is an n-dimensional direction vector evaluated at 

the ith iteration. The vector d
i
 determines the direction to be taken from the ith point  x

i
 and 

the magnitude of h
i
 d

i
 determines the size of the step in that direction. There are many 

methods in the literature for determining the vector d
i
 and they can be divided into two natural 

classifications - direct search methods and gradient methods. Direct search methods use only 

the values of the objective function. On the other hand,  gradient methods in addition to 

function values require values of the first and (for some algorithms) second order partial 

derivatives of the function. Few methods will be summarized here. 

The first intuitive attempt of linear direct, value based search procedure consist of 

subsequently minimizing along each coordinate direction. This optimization method is known 

as the alternating variable method. Starting from the given guess, moving parallel to each axis 

in turn and changing direction when a minimum in the direction being searched is reached is 

illustrated in Figure 3a.  

Obviously this method not efficient, but by a simple modification a practical method 

could be obtained – Hooke-Jeeves method. Alternating changing of directions is implemented 

as the first step of the method, but now only one discrete move x is conducted for each 

positive and/or negative direction, and the new point is kept if smaller function value is 

obtained. This is called the exploratory move. The method consists of a combination of 

exploratory moves and pattern moves: the former seek to locate the direction of any valleys in 

the surface and the latter attempts to progress down any such valleys. This procedure 

illustrated in Figure 3b continues until all n variables in exploratory move cannot find a better 

solution. The procedure can than be continued with smaller x until x is larger than some 

pre-set tolerance value. 
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A frequently used robust optimization method belongs to a group of simplex methods, 

of which Nelder-Mead and regular simplex method are widely used. A regular simplex in n 

dimensions is n+1 mutually equidistant point. In two dimensional plane the simplex is an 

equilateral triangle that is, its vertices. Useful property of regular simplexes is that a new 

simplex can be easily set up on any face of a given simplex by the addition of only one new 

point. This makes a basis for the Simplex Method of optimization, illustrated in Figure 3c. The 

search begins by setting up an arbitrarily regular simplex. The vertex corresponding to the 

greatest function value is then replaced by its reflection in the hyperplane of the remaining 

points, forming a new simplex. The function is evaluated at the new vertex and the process 

continues. Exception must be made if the vertex with the greatest function value is the one 

most recently introduced. This would cause oscillation that can be avoided by simply using 

second largest function value instead of the largest. 

Three earlier methods were value-based methods which are robust but computational 

inefficient. A more efficient method can be obtained by computing gradients to aid us in 

search for optimal solution. Gradient methods h use the values of the partial derivatives of the 

function with respect to free variables in addition to the values of the function itself. Simplest 

gradient based method is the steepest descent method, At any given point, the search direction 

is the direction whose components are proportional to the first partial derivatives of the 

function, Method is illustrated in Figure 3d. Many variations of this method direction have 

subsequently been proposed [7]. 

 
a)       b) 

 

 
c)      d) 

 

Figure 3 Illustration of iterative optimization procedures: a) Alternating Variable 

Method b) Hooke- Jeeves c) Simplex method and d) steepest decent method, [7]. 
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2.4. Genetic algorithms 

Several modern heuristic tools exist for solving optimization problems that are difficult 

(or even imposible) to solve using classical methods. These tools include simulated annealing, 

tabu search, particle swarm, evolutionary computation, etc. These techniques are finding 

popularity within research community as design tools and problem solvers because of their 

flexibility and ability to optimize in complex highly non-linear search spaces with multiple 

local minima. GA can be viewed as a general-purpose search method. It is based loosely on 

Darwinian principles of biological evolution, reproduction and “the survival of the fittest”. GA 

maintains a set of candidate solutions called the population and repeatedly modifies them by 

application of genetic operators.  

Initial population is usually generated randomly and its size is selected based on 

experience on similar optimization problems. From the initial (and subsequent) generations, 

next generation is generated in several steps by application of selection, reproduction and 

mutation operators.  In first step, selection operator creates temporary clones of the selected 

individuals. By preferring more fit individuals the selection operators implements “the 

survival of the fittest” principle.  Children are obtained by combining features of randomly  

selected clones, from two parents two children are created by reproduction operator. Third 

step is applying small amount of random modifications to children i.e. mutation. In some cases 

it is desirable to keep selected individuals so they are cloned without modifications. Over 

successive generations, the population evolves toward the optimal solution since the 

individuals with lower function values have higher fitness value and are more likely to be 

selected for reproduction (survival of the fittest). The GA is well suited to and has been widely 

applied to solve complex engineering optimization problems. GA can handle both continuous  

and discrete variables, nonlinear objective and constraint functions without requiring gradient 

information. Genetic algorithms are global optimization techniques, which means that they 

generally converge to the global solution rather than to a local solution. However, this 

distinction becomes unclear when working with multi-objective optimization where Pareto 

optimal solutions are obtained. The defining feature of GA multiobjective optimization 

methods is that not just local but global Pareto solutions are determined by the procedure [6]. 

The flowchart of genetic algorithm is illustrated in Figure 4. 
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Figure 4. Flowchart of genetic algorithm [8]. 

2.4.1. Variable chromosome 

In optimization which involves simultaneous topology and shape optimization, various 

approaches exist. An often applied method is the level-set method [9] when applied, the same 

parameterization can be used while allowing the topology variations. In the cases when the 

level-set method is not applied, a different approach to topology optimization is required. One 

of the approaches could by the application of variable length chromosomes [10]. For such 

problems, the number of variables for which a solution is searched does not need to be known 

in advance. This type of variable length chromosomes could contain information of multiple 

set of objects, their shapes, locations, etc. The chromosomes would grow in size adding more 

genes if more objects are added during the optimization procedure.  Figure below shows 

examples of structure (phenotype) and chromosomes of different length (genotype) for two 

hypothetical designs. In [10],  the changes of the chromosome length are implementing from  

coarse  to  fine. After the near optimal solution is found by small number of variables (short 

chromosome), the number of variables is increased (longer chromosome) for the whole 

population and the procedure continues to the next stage.  
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Figure 5. Examples of designs in the phenotype and corresponding chromosomes in the 

genotype domain[10]. 

Various problems and solutions exist and a good review of the methods is given in 

[11]. Genetic algorithm with variable length chromosome could be applied for multi-patch 

parameterization since the topology of the optimal solution is not known in advance. 

2.5. Sensitivity analysis 

Design sensitivity analysis plays an important role in several areas including numerical 

optimization.  Sensitivity information is also valuable on its own for estimation of robustness 

of the obtained solution with respect to the optimization variables. It is possible to determine 

how the value of a given response function (optimization objective), changes with respect to a 

given change in the model parameters. For small perturbations |Δx|, this information is 

obtained through a first-order Taylor series expansion. If the response function is the stress at 

a point of a structural system, aerodynamic performance measure, or some other quantity 

evaluated through a computationally expensive numerical analysis, then it can be predicted  

how the response function value varies for small perturbations in the model parameters 

without performing a re-analysis. Much work has been performed in the field of design 

sensitivity analysis. Most notably, perhaps, is the work in structural mechanics with 

applications to structural optimization [12].  

The simplest method to obtain sensitivity information is the finite difference method. In the 

finite difference method, a simple Taylor series expansion is used to approximate to the 

derivative: 

 

 
2( )

 ( ) = ( ) + x ( x )
x


   


 i i

i i

f
f f o

x
x + x x  (9) 

where the derivatives are approximated with finite differences for every design variable 

independently. This method thus suffers from computational inefficiency and possible errors. 

More often used is the adjoint method whose basics are explained briefly in continuation.  The 

adjoint method originates in the theory of Lagrange multipliers in optimization [15].   
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As an example, consider the minimization of a function J from n  into 1  (single-

objective), under the equality constraints h from n  to m .  

 
Minimize ( )  such that ( ) 0J hx x  

 
(10) 

Introducing the Lagrange multilplier   in m  and the Lagrangian L : 

 1 2

1

( , , ,..., ) ( )  ( )   


 
m

m k k

k

J hx x xL   

the optimality condition for (10) (under some qualification conditions) is the 

stationarity of the Lagragian, namely 

 ( , ) 0 * *
xL    

 

The adjoint method is an extension of this approach in the framework of optimal 

control theory. In this context, the variable x is the union of a state variable y and a control 

(shape) variable u, while the constraint ( ) 0h y,u is the state equation (governing equations) 

which gives y in terms of u. In such a case the Lagrange multiplier   is called the adjoint 

state. Denote by u in k a control variable.  The state of the system is denoted by y in n  and 

is defined as (for finite dimensional case) the solution of the following state equation: 

  ( ) =u y bA  (11) 

 

where b is a given right hand side in n  and A(u) is an invertible nxn matrix. Since 

the matrix depends on u, so does the solution y. The goal is to minimize, over all admissible 

controls u, an objective function J(u,y) under the constraint (11). The difficulty of the problem 

is that y depends nonlinearly on u. We assume here that u is a continuous variable.  

To numerically minimize the objective function J, the most efficient algorithms are those 

based on derivative informations. Therefore, a key issue is to compute the gradient of 

J(u,y(u)). Several method exist for computing the gradient of the objective function J(u,y(u)) 

There are at least two ways for introducing an adjoint in a computer code. Either, a so-called 

analytic adjoint, is implemented. Or a program for the adjoint is obtained by automatic 

differentiation of the code solving the state equation (11). The drawback of the whole adjoint 

approach it requires the development of an adjoint solver (no general purpose adjoint solver 

exist for CFD). This can be a labor intensive task which requires good knowledge of the 

implemented numerical tools [15].   

Optimization with aid of the solution to the adjoint system of equations is an active area of 

research with applications in both structural optimization and computational fluid dynamics, 

particularly for aeronautical applications [13]. In fluid dynamics, the first use of adjoint 

equations for design was by Pironneau [14] for minimization of drag in stokes flow. 

Application of the adjoint approach is popular in the optimal design of structures for topology 

optimization problems. In those cases, the number of optimization variables describing the 

system is so large that it is the only viable approach. In the context of topology optimization 

for mechanical structures, the number of design variables is even larger since any cell of a 

“hold-all” computational domain is potentially a design variable: either it is full of material or 
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empty. Example of solution from [16] is illustrated in Figure 6, where the shape derivative is 

computed by an adjoint method and level-set method is used for front propagation. 

 
Figure 6. Initial guess and optimal shape for the three-dimensional electrical mast 

[16]. 

The adjoint approach is only helpful in the context of gradient-based optimization and 

such optimization has its own limitations. Firstly, it is only appropriate when the design 

variables are continuous. For design variables which can take only integer values (e.g. the 

number of vane of the fan, or number of blades of wind turbine) stochastic procedures such as 

GA are usually implemented since gradient does not exist in those cases. Secondly, if the 

objective function contains multiple minima, the gradient approach will generally converge 

only to the nearest local minimum. This is usually solved by multi-start from various locations 

in search space if one wants to find the global minimum using gradient methods. Still. if the 

objective function is known to have multiple local minima, and possibly discontinuities,  a 

stochastic search method such as GA may be more appropriate [13].  

2.6. Surrogate models 

Engineering simulations such as CFD tend to be computationally very expensive. The 

idea to improve the optimization speed is to partialy use an approximation of the simulation 

result with computationally efficient methods during the optimization run. 

Surrogate-based optimization represents a class of optimization methodologies that 

make use of surrogate modeling techniques to quickly find the local or global optima. It 

provides an optimization framework in which the conventional optimization algorithms, e.g. 

gradient-based or evolutionary algorithms are used for sub-optimization(s). Surrogate 

modeling techniques are of special interest when using computationally expensive CFD 

simulations. They can be used to greatly improve the design efficiency and be very helpful in 

finding global optima, filtering numerical noise, realizing parallel design optimization and 

integrating simulation codes of different disciplines into a process chain. The term “surrogate 

model” has the same meaning as “response surface model”, “metamodel”, “approximation 

model”, “emulator” etc.  For optimization problems, surrogate models can be regarded as 

approximation models for the cost function (s) and state function (s), which are built from 

sampled data obtained by randomly probing the design space (called sampling via Design of 
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Experiment (DoE)). Once the surrogate models are built, an optimization algorithm such as 

Genetic Algorithms (GA) can be used to search the new design (based on the surrogate 

models) that is most likely to be the optimum. Since the prediction with a surrogate model is 

generally much more efficient than that with a numerical analysis code, the computational cost 

associated with the search based on the surrogate models is generally negligible. Surrogate 

modeling is referred to as a technique that makes use of the sampled data (observed by 

running the computer code) to build surrogate models, which are sufficient to predict the 

output of an expensive computer code at untried points in the design space. Thus, how to 

choose sample points, how to build surrogate models, and how to evaluate the accuracy of 

surrogate models are key issues for surrogate modeling [17].  

2.7. Example of optimization workflow 

The overall numerical optimization problem with all included components is usually 

integrated in an optimization workflow. An example of a workflow is presented here. This is 

important since the workflow represents the final product of integrating all of the required 

engineering simulation, parameterization methods and optimization algorithms.  

Numerical workflow developed in [18] will be demonstrated as an example. The 

developed workflow is capable of fully generic 3D SO of a centrifugal roof fan vane by 

manipulating the control points of parametric surfaces as illustrated in Figure 7. This 

workflow is an upgrade version of workflow developed in [19] for 2D optimization. 

 
Figure 7. Shape parameterization using generic B-spline surface, used for both vane 

and domain parameterization [18]. 

Additional variables used are rotation speed and the discrete number of vanes.  The 

excellence formulation is based on design flow efficiency, multi-regime operational conditions 

and noise criteria for various cases including multi-objective optimization. Multiple cases of 

optimization demonstrate the ability of customized and individualized fan design for the 

specific working environment according to the selected excellence criteria. Noise analysis is 

also considered in an multi-objective optimization workflow as an additional decision making 

tool. The workflow for the multi-regime operational conditions is illustrated in Figure 8. In  

the figure, the horizontal direction represents the process flow while the vertical direction 
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represents simultaneous data flow. Corresponding data mining and coordination of process 

flow were implemented using commercial software modeFRONTIER [20]. The computational 

workflow needed to implement the procedure encapsulates geometric modeling (computer-

aided design, CAD), simulation software (computational fluid dynamics, CFD) and calculators 

(statistical mean calculation) coupled with the evolutionary numerical optimization. The 

numerical coupling needs to include both the process executions and their mutual 

synchronization as well as data flows between the individual applications. The workflow is in 

this example controlled by MOGA-II, a version of multi-objective genetic algorithm. Detailed 

description of input and output quantities is available in [18]. Here the workflow is illustrated 

just to present that it is indeed possible to construct a working numerical workflow that 

integrates all the necessary applications and procedures. 

 

Figure 8 Example of optimization workflow [18]. 
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3. SHAPE PARAMETERIZATION 

This doctoral qualification exam considers engineering SO as a combination of fully 

generic 3D shape modeling, complex engineering numerical simulation simulation (3D CFD), 

and global optimization combined. Hence a heavy computational effort of the respective 

numerical workflow can be expected. This requires an efficient shape parameterization with as 

much geometric modeling capability with a small number of optimization variables. Surveys 

of parameterization methods for engineering applications have been made but they are usually 

limited to a specific object, for example [21], [22] give a survey of parameterization methods 

on 2D airfoil. So this chapter will give a more general overview of currently available efficient 

generic shape parameterization methods, focusing on genetic surfaces. 

Wide variety of shape parameterization methods exist, as there is no single 

representation of surfaces that satisfies all of the needs for engineering SO problems. The 

simplest shape representation method is the mesh points method, which requires a large 

number of design variables but there are no restrictions on attainable geometry. Since it 

requires a large number of variables, it is not very useful for generic SO. While CAD models 

are often used in engineering, they consist of many interconnected partitioned geometric 

entities with corresponding parameters, relationships and constraints. This makes them not 

appropriate for SO and therefore other parameterization methods need to be considered. 

Complex 3D shape might in the most elementary approach be represented by a single 

polynomial surface, requiring high-degree polynomials. High degree polynomials have issues 

of lacking local control and they exhibit oscillatory behavior likely to introduce numerical 

difficulties. The first shape parameterization method that will be presented in the doctoral 

qualification exam is the Bezier surface (single-patch) parameterization. The Bezier single-

patch surface offers a more intuitive shape parameterization method, explained in more detail 

in continuation of this chapter. A generalization of Bezier patches is B-spline surface, one of 

the most often used surfaces for shape parameterization. Furthermore, their generalizations are 

the non rational uniform B-splines (NURBS) and T-splines. Radial basis functions (RBF) are 

also reviewed since their different definition allows for some possible advantages in 

comparison to Bezier surface family.  All of the mentioned generalizations of the Bezier 

surface can be regarded as single-patch parameterizations. In order to achieve further 

generalizations, multi-patch surfaces are required. Often used multi-patch surfaces in CAD are 

subdivision surfaces, but any single patch surface can be connected (with varying degree of 

smoothness) to create a multi-patch surface. When connecting multiple shapes, aspects of 

continuity between the surfaces are very important, thus a brief chapter about prescribing 

boundary conditions and continuity between the surfaces is also presented. If the prescription 

of boundary conditions is not an option, a smooth transition between the patches or at the 

surface-intersection could be achieved with blending functions. Finally and interesting 

possible method that could integrate the shape parameterization method with numerical 

analysis (CFD, FEM,…) is isogeometric analysis. Regarding the application in engineering 

optimization, still, no universal solutions exist. So an appropriate selection amongst a wide 

variety of existing methods and development of new parameterization methods offers a lot 

space for improvement.  
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3.1. Parametric, explicit and implicit shape 

 Before the actual shape parameterization methods are presented, three types of shape 

representation will be discussed. Descriptions will focus mostly on surfaces since they are 

important in engineering SO application although the extension to more dimensions is usually 

trivial. Two commonly used surfaces in shape modeling are parametric and implicit surfaces 

but sometimes explicit surfaces are also appropriate.  

The explicit surface can be defined with single expression P( , )z x y . The parametric 

surface required three expressions similar to the explicit surface expression, what can be 

written as: 
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( )
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 
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where: 

- P  is a mathematical function, mapping 2 3 , i.e. from parametric space to 

model space. For two-dimensional shapes that exist in three dimensional space, but 

in general case n m ; 

- u  is a point in 2D parametric space. 

The implicit surface is defined by: 

 
3I( ) 0, x x  (13) 

where: 

- I is a mathematical function, mapping 3 1 , but in general case 1 n . For 

example n=2 gives a implicit definition of curve.  Algebraic, trigonometric, 

exponential, logarithmic etc. functions can be used, as well as any function 

described in the continuation of this chapter (most often with RBF-s); 

- x  is a point in 3D space; 

- n is the dimensionality of space in which surface is located, for real objects n=3. 

Comparably, explicit surfaces have the least shape generality as they cannot represent 

infinite slopes (if polynomials are used) or closed and multi-valued surfaces. The advantage is 

that they are easy to construct and display. The explicit surface can easily be converted to 

implicit P( , ) 0 x y z  but reverse can be achieved only for simple cases.  Implicit surfaces 

are difficult and non-intuitive to manipulate and not easy to construct (display). Curves can be 

constructed only in 2D.  The implicit surfaces compared to parametric surfaces offer some 

advantages such as: any topology can be represented by a single mathematical function; easy 

representation of intersection; easy point classification for internal ( P( ) 0x ) and external 

points ( P( ) 0x ).  But parametric surfaces are easy to construct and enable intuitive 

manipulation what is very important and makes parametric surfaces the most used type in 

engineering SO applications. The following chapters will chiefly presume that parametric 

surfaces are used although with little modification the same mathematical functions can be 

used to define implicit surfaces.  
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3.2.  Bezier Patches 

Bezier curves and surfaces (12) are convenient in shape parameterization since they 

pass through the end control points and the end slopes are defined by the respective control 

points at the ends, and analogously for higher-order derivatives. These properties are used in 

this paper to impose inter-segment continuity for piecewise chained curves. Parametric curve 

can be defined by the n-th degree Bezier curve P(u) for (n+1 control points) as [23]: 

 ,
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where B (Bernstein polynomial) is defined recursively (non-recursive and more 

efficient definition also exists)  as: 
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Vector  iQ   is the vector of control points (Figure 9) coordinates and  0,1u  is the 

curvilinear coordinate parameter. 

 
Figure 9. Bezier curve of degree 4 with 5 control points 

Bezier curves can be extended to 3D Bezier surfaces (and bodies) for describing 

parametric surfaces (and bodies). This is achieved by combining Bezier curves, whereby 

control points of a Bezier curve are replaced by Bezier curves in the orthogonal direction, 

 , , ,

0 0

( , ) ( ) ( ) , , (0,1)
 

   
n m

i n j m i j

i j

u v B u B v u vP Q  (16) 

 

where ,i jQ are the control points of the control polyhedron. Bezier curves do not 

possess the property of locality and directly link the number of control nodes with the degree 

of the respective curve.  
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Figure 10. Single patch Bezier surface  and control points and of 3
rd

 degree [23]. 

3.3. B-spline and NURBS 

B-splines are a generalization of Bezier curves (and a special case of NURBS) where 

the degree of the curve is independent of the number of control points and where the change of 

one of the control points only affects k segments. Parametric surface described by B-splines 

can be defined as: 
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with blending functions defined recursively as  
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 0 1i n d     (19) 

The equations  (17)-(19)  define the B-spline. As the individual shape functions Ni,j(t) 

are non-zaero just for the [ti, ti+j+1) interval, while amounting to zero for t<ti and t≥ti+j+1, the 

property of local control is ensured. As a result, the surface is locally formed exclusively by a 

small number of adjacent control points, Qij. The first and the last blending function in both u 

and v directions are equal to unity at the ends while the rest of the blending functions equal to 

zero making the surface pass coincidently through the end curves. The distribution of knots ti 

along the parametric coordinate influences the shape of the basis functions as illustrated in the 

following figure.  
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Figure 11. The recursive definition of B-spline basis functions [24]. 

The shape of the surface is controlled by modifying the control points and the knot 

vectors. The properties of local support, partition of unity and non-negativity add to the 

numerical stability of the subsequent optimization procedure. B-spline and NURBS surfaces 

are flexible enough and provide sufficient degrees of freedom (DOF) to represent the 

necessary shape for ship hull representation. Those integral shape parameterizations are also 

scalable as the number of control points and the degrees of the basic polynomials can be 

varied. The NURBS curves and surfaces are a generalization of the B-spline. NURBS use the 

same blending functions as B-splines but in n+1 dimensional space where n is the actual space 

dimensionality (n=2 for plane, n=3 for 3D space). The additional coordinate adds the ability to 

increase and decrease the impact of an individual control point on the resulting shape thus 

enabling better control. Furthermore, with additional coordinate analytical shapes (conics) can 

exactly be represented.   For NURBS curve, the fourth coordinate is: 
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where hi denotes respective weights. The shape is projected to the original space by 

dividing with the fourth coordinate. Thus the NURBS for parametric curve: 
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For parametric surfaces, extension of  NURBS curves to surfaces is defined by: 
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(22) 

 

3.4. T-Splines 

B-splines and NURBS belong to a type of tensor-product surfaces that use a 

rectangular grid of control points. A goal of T-splines is to generalize B-spline surfaces to 
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allow the control points rows or columns to be partial i.e. the row or column can start and be 

terminated before reaching the first of the last row or column position. T-spline control grids 

permit T junctions, so lines of control points need not traverse the entire control grid as with 

B-splines or NURBS. T-splines support many operations not possible with standard B-spline, 

such as local refinement, and the merging of several B-spline surfaces that have different knot 

vectors into a single gap-free model as illustrated in Figure 12.  Merging B-splines into a T-

spline can be achieved with C
0
, C

1 
or C

2
 continuity[25]. 

 
Figure 12. A gap between two B-spline surfaces, fixed with a T-spline [25]. 

To define a T-spline, it is necessary first to describe a surface whose control points 

have no topological relationship with each other whatsoever (as opposed to regular grids). 

This surface is called a PB-spline, because it is point based instead of grid based. The equation 

for parametric surface using a PB-spline is: 
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where iQ are control points and ( , )iB u v  are basis functions given by: 

 
3 3

0 0( , ) ( ) ( )i i iB u v N u N v  (24) 

where 
3

0 ( )iN u and 
3

0 ( )iN v  are the cubic B-spline basis function associated with the knot 

vectors: 

 
 0 1 2 3 4, , , ,i i i i i iu u u u u u  

 0 1 2 3 4, , , ,i i i i i iv v v v v v  
(25) 

as illustrated in Figure 13. Thus, to specify a PB-spline, one must provide a set of knot 

vectors for each control point.  
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Figure 13. Knot lines for basis function ( , )iB u v  [25]. 

The PB-spline domain is usually selected such as there are at least three influence 

domains Di , an example where four influence domains are defining a PB-spline domain is 

illustrated in Figure 14 together with the resulting shape.  It can be noticed that a PB-spline is 

mesh-free method; the knot vectors for each basis function are completely independent of the 

knot vectors for any other basis function. 

 
             a)                  b)                             

Figure 14.A PB-spline with four control points: a) cubic PB-spline domain b) PB-

spline control points in space and the resulting PB-spline shape [25]. 

A T-spline is a PB-spline for which some order has been imposed on the control 

points. The control points of T-spline are obtained by modifying standard B-spline mesh by 

following certain rules as described below, thus creating T-mesh. Figure 15a illustrates 

parametric location of PB-spline control points  2 2,u v ; when PB-splines are set in an ordered 

grid, the result is equivalent to B-spline. Example of application of T-spline rules to an initial 

B-spline control point mesh results a T-mesh as illustrated in Figure 15b. A T-mesh serves two 

purposes. First, it provides easier and more intuitive control over the surface than does the 

completely arbitrary PB-spline control points. Second, the knot vectors ui and vi for each basis 

function are deduced from the T-mesh. When a rectangular grid (the same grid as for B-spline) 

is used for T-mesh, the T-spline reduces to a B-spline.  
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   a)           b)  

Figure 15. Creating a T-mesh: a) initial B-spline mesh b) T-mesh created by following 

T-spline rules [25]. 

So called standard and non-standard T-splines exist. Both T-splines require that the 

following rules are met: 

- The sum of knot intervals (distance in parametric u-v domain) on opposing 

edges of any face must be equal. Thus, for face F in Figure 15, d2 + d6 = d7 

and e6 + e7 = e8 + e9. 

- If a T-junction on one edge of a face can be connected to a T-junction on an 

opposing edge of the face (thereby splitting the face into two faces) without 

violating previous rule, that edge must be included in the T-mesh. 

To each Pi corresponds a basis function ( , )iB u v defined in terms of knot vectors (25). 

The knot coordinates of Pi are (ui2; vi2). The knots ui3 and vi4 are found by considering a ray in 

parameter space R() = (ui2+; vi2). Then ui3 and vi4 are the s coordinates of the first two u-

edges intersected by the ray (not including the initial (ui2; vi2)). The other knots in u and v are 

found in similar manner. P3 is a boundary control point. In this case, u3,0 and v3,4 do not matter, 

so any displacement can be taken. This is valid for both standard and non-standard T-splines.  

A standard T-spline is defined as one whose basis functions ( , )iB u v  in equation (23) sum to 

one for every (u, v) in the domain. A standard T-spline can be constructed by starting from a 

regular B-spline mesh, and using the knot insertion rule: 

- P3’ can only be inserted if v1 = v2 = v4 = v5 (see Figure 10). vi is the v-knot 

vector for basis function Bi. If the control point were being inserted on a 

vertical edge, the four neighboring ui knot vectors would need to be equal 

[25]. 
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a) b) 

 
        c)                          d)  

Figure 16. T-mesh knot insertion: a) before insertion, b) after insertion c) A cannot be 

inserted for a standard T-spline  d) A can be inserted keeping a standard T-spline [25]. 

3.5.  Subdivision Surfaces 

The past few decades witnessed a lots of research activities in the area of CAD 

especially with relation to subdivision surfaces [26].  A recursive subdivision surface can be 

defined as a limit in application of a set of subdivision rules R to an initial polyhedral network 

P as illustrated in Figure 17. Subdivision rule from the set R is repeatedly selected and applied 

to the intermediate results of the subdivision process. Thus the initial polyhedron P is driven 

though a sequence of transformations which in proper case lead to a smooth limit surface. 

 
a) 

 
b) 

Figure 17. Recursive subdivision scheme: a) The elements of a recursive subdivision 

scheme b) The recursive subdivision process[26]. 

The main attraction of recursive subdivision is, first, the unified character of the 

underlying theory and, second, its flexibility in view of its ability to handle shapes of arbitrary 

topology. However, there are multiple concerns when applying subdivision surfaces in 

engineering optimization problems. Conceptual issues exist such as continuity and 

differentiability of the limit surface. Another concern is accuracy of representation in relation 

to parameters such as normal vectors, curvatures. These limitations are a major concern for 
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application in engineering optimization, especially if integration of CAD and analysis in 

isogeometric analysis solution is sought. Additional problem is the efficiency of subdivision 

algorithms and their heavy memory consumption in the case of large applications.  

3.6. Radial basis functions 

Radial Basis Functions (RBF) are often used for interpolating scattered points, 

appropriate for example on 3d point cloud obtained by 3D scaning.  They are usually used 

with large number of basis functions, an example of interpolation to 438,000 point-cloud is 

illustrated in Figure 18.  

 

 
Figure 18. Fitting a Radial Basis Function (RBF) to a 438,000 point-cloud [27]. 

Generally, parametric shape can be described by RBF (surfaces, curves,…) that are 

build up by summing the individual RBFs multiplied by weighting coefficients: 

 
0

( ) ( )


 
N

i i

i

RP u u  w  (26) 

 

where: 

- N is the number of used RBFs, 

- iw is weighting coefficient, for surface it is 2-dimensional, in general case 

n-dimensional. It could be regarded as a control mechanism since it 

represents a free variable that influences the shape of the resulting surface, 

- ( )iR u  is the RBF. Various different RBFs exist, the most simple and often 

used is the Gaussian RBF:   

 
2( ) 

 ic

iR e
u u

 (27) 

where: 

-  c is constant;  

- u  is parametric coordinate, in general m-dimensional; 

-  is Euclidian distance; 

- iu  is the individual RBF center. 

Because RBFs usually require large amount of points to accurately represent shape, 

they might not be appropriate for engineering SO. Nevertheless RBFs may potentially be 

useful since they can be used with unstructured (control) points. Gradients and higher 
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derivatives are easily determined analytically and are continuous and smooth. Additionally 

RBFs can be used for smoothing and re-meshing existing surfaces [27].   

3.7. Boundary conditions 

In order to describe a complex geometry it is often required to join multiple surfaces 

with positional, tangential or curvature continuity. In earlier discussion, most of the 

parameterization methods can be regarded as a single patch parameterizations. While the 

subdivision surfaces are a sort of multi-patch parameterization able to represent arbitrary 

topology, they exhibit problems with continuity and differentiability.  To convert single patch 

parameterization to multi-patch and enable representation of arbitrary topology, the single 

patch parameterizations need to be connected mutually. This requires imposing the boundary 

conditions on the connected parts of single patch parameterizations.  Two types of continuity 

exist, geometric continuity and parametric continuity. G
k
 and C

k
 are used to denote geometric 

and parametric continuity of order k respectively. G
0
 and C

0
 continuity means that the surface 

is continuous regarding its value both in model space and in parametric space (notice that both 

value continuities have the same definition). If the shape is continuous in first derivative G
1
, 

this does not mean it is continuous in value.  Difference between geometric and parametric 

continuity can be explained on the example of two connecting curves in a point (u)p . Both 

curves have tangents at the point, 1

u(u)p and 2

u(u)p  (derivative with respect to u). If 1

u(u)p = 

2

uc (u)p  and 1c , the curves are G
1 

continuous, meaning they are only continuous in first 

derivative in model space but not in parametric space.  When connecting two patches, 

depending on application both geometric and parametric continuity are important.  Single 

patch can be connected both on edges of the local support domain of the respective single-

patch parameterization (boundary conditions) or by intersecting two (or more) single patch  

surfaces and imposing the continuity conditions at the intersection (imposing conditions 

within the domain). 

 

When using RBF surfaces, the domain is usually the entire n  where n is the 

dimensionality of parametric space, so the “boundary” conditions are imposed within the 

domain if one wants to connect two different surfaces.  Since RBFs are not often used for 

geometry modeling (more often for interpolation); this chapter will focus on NURBS surfaces 

and how to impose conditions both on the boundary and within the domain.  

3.7.1. Imposing conditions on domain boundary 

Constraints can be imposed by a direct method or by basis modification method in 

which the B-spline basis  is replaced by a modified basis [28]. For a simple coincidence 

constraint, imposing constraint is trivial when using B-spline or NURBS curve. A NURBS 

curve 1 1    having a knot sequence  ,iu a b  with k coincident knots at the ends: 

  1 1 1... ... ...            i k k n n n ku a u u u u u u b  (28) 
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interpolates its end control points.  This means that, e.g., at the end u=a: 

 1 1 1
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(29) 

 

So, a NURBS curve by default interpolates its end control point i.e. if two points are 

given, they are interpolated by setting the same coordinate values to endpoints. Positional 

continuity between two NURBS curves is obtained by setting the end control points to be 

identical. Furthermore, a NURBS curve is tangent to the lines connecting the first two or, 

respectively, the last two control points at its ends. At the end u=a: 
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(30) 

 

Where 
iN denotes derivation of the respective basis function. So, if a tangential 

conditions needs to be imposed on a NURBS curve end, the end-point and the nearest control 

point have to be set collinear with this direction. Tangential continuity between two NURBS 

curves is obtained by setting the end control points of both curves to be collinear. For higher 

order continuity general formulas can also be derived but it becomes more and more complex. 

There also exist sufficient conditions with which two curves can match smoothly, based on the 

theory of subdivision of curves.  

The conditions described for curve can be generalized to NURBS surfaces by applying 

them on a row by row basis, the rows taken perpendicular to the side on which the boundary 

condition is imposed, see Figure 19. This implies that the NURBS surfaces at the end-to-end 

location need to be of the same length, the same order and the same knot vector along the 

connecting location. If the bounding entity is a NURBS curve or a NURBS surface, this 

condition will not be fulfilled automatically and some conversions may be necessary. 

 
Figure 19. Imposing boundary conditions on a NURBS surface can be done on a row 

by row basis [29].  
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Boundary conditions can be imposed on a NURBS curve or surface at two levels, i.e. 

by incorporating boundary conditions into the fitting process or by imposing boundary 

conditions on a fitted surface and thereby modifying the surface locally. Some commercial 

CAD systems support the latter method. The first method has the advantage that the least 

squares fitting, in which the distances to the digitized points are minimized, is performed 

taking into account the imposed conditions so as to obtain the best fit [29].   

In [30], two cases of imposing boundary conditions between two surfaces are 

considered. The first case illustrated in Figure 20a is fitting of two surfaces to two sets of 

measurement data with a G2 continuity between the surfaces. The second case (Figure 20b) is 

the case for one known surface and one data set for fitting. B-spline surfaces are used. In was 

shown that when two surfaces share the same boundary and are G2 continuous, the three 

arrays of the control points nearest to the common boundary for both surfaces can be related to 

each other. When one surface is known, the first three arrays of the control points of the 

second surface can therefore be determined, in the case where two surfaces are G2 continuous. 

The problem is solved by including the G2 continuity conditions in fitting procedure.  

 
a) 

 
b) 

Figure 20. Imposing boundary conditions between two surfaces: a) Two sets of 

measurement data; b) A set of measurement data and a known surface [30]. 
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Chui et.at. [31] introduced an approach for constructing effective algorithms for 

removing gaps between parametric bicubic NURBS surfaces, while maintaining G1 

smoothness for the combined surface. The smoothness was accomplished by manipulating the 

control points and weights, but without disturbing the interpolation data, while minimizing the 

modification of the NURBS surfaces patches. The technique was developed for multiple 

surfaces but in the paper was applied to up to four NURBS surfaces as illustrated in Figure 21. 

 
Figure 21. Schematic diagram of parametric domains of four parametric NURBS 

surfaces P1, P2, P3and P4. 

Another common problem imposed on boundaries is construction of a NURBS (or B-

spline) surface satisfying prescribed angle distribution along its boundary curve. In [32], the 

problem is (among other constraints) prescribing a given angle distributions along a splitter for 

a Pelton turbine bucket as illustrated in Figure 22. Geometry is described with uniform bicubic 

B-spline surface composed of 7 × 4 patches which is determined by the control net of 12 × 7 

control points and knot vectors. Conditions for C2 continuity across the inner curves are 

prescribed on the control points in the control net, what can be accomplished as presented 

earlier. The most difficult part of imposing given angles and distances on the Pelton turbine 

bucket B-spline model is to satisfy prescribed angle along a splitter and not between the 

individual B-spline patches.  It was proven that for a given B-spline curve ( )P u the exact 

solution exists only in very special cases, for a special form of an angle function f (u), so 

algorithms for finding approximate solutions have been developed  [32].   

 
Figure 22. Angle distribution along a splitter as(u) [32].    
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3.7.2. Imposing user defined constraints 

Many current geometric modelling systems allow constraints to be specified on models 

constructed by a user. In parametric systems, a generic model is defined using a set of 

parameters. A particular realization of the model is then instantiated by allocating particular 

values to the parameters. It may be possible in such systems to specify some parameters in 

terms of others, but there must be a unique ordering allowing the geometry to be constructed 

sequentially from previously determined elements. In contrast, variational systems allow the 

user to input the geometry in a schematic way, and for the actual geometry to be determined 

by constraints linking the geometric elements. Various methods of solving such constraint 

systems exist. These may be broadly summarized as (i) analytical solvers, which rely on 

numerical methods (such as Newton-Raphson methods), or symbolic or both, (ii) graph-

theoretical based methods, and (iii) rule-based methods. Selecting the desired solution when 

the non-linear constraint system has many multiple solutions is a tricky problem; it persists 

even when the user provides an approximately correct initial geometry, and heuristics are 

often used. Generally, the geometric problem is translated into an algebraic equation system, 

which is possibly reduced by algebraic simplification [33]. The standard numerical method for 

solving a minimisation problem subject to a set of equality constraints is to use the Lagrangian 

multipliers method.  

3.8. Surface intersections 

Intersections are a necessary part of CAD, geometric design and modeling, analysis, 

and especially important in CAM and manufacturing applications. The most important 

intersection problem involves intersections of surfaces to surfaces. In order to solve general 

surface to surface (S/S) intersection problems, the following auxiliary intersection problems 

need to be considered [34]: 

1. point/point (P/P) 

2. point/curve (P/C) 

3. point/surface (P/S) 

4. curve/curve (C/C) 

5. curve/surface (C/S) 

All of the above intersection problems are especially useful also in robotics, 

manufacturing simulation, collision avoidance, etc. When the geometric elements involved in 

intersections problem are nonlinear (curved), the problem normally reduces to solving set of 

nonlinear equations. Solving the nonlinear systems is a complex process in general, requiring 

application of numerical methods. Furthermore, the problems that come about in geometric 

modeling applications pose severe accuracy, robustness, and efficiency requirements on 

solvers of nonlinear systems. Therefore, specialized solvers have been developed to address 

these requirements explicitly using geometric formulations  [34]. 

The first - point/point intersection problems reduces to checking the Euclidean distance 

between two points usually by checking if the distance is smaller than some tolerance.  Next 

case is point / parametric curve intersection . In general case of parametric curve, there is no 
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known and easily computable convex box decreasing in size arbitrarily with subdivision for a 

procedural parametric curve. An approximate solution method may involve minimization of 

distance with parametric coordinate u as minimization variable. Initial solution for the possible 

minima may be found by using linear approximation of the curve. Convergence of the 

minimization processes is not guaranteed in general and there more than one local minimum 

could exist. Furthermore convergence to local and not global minimum (distance note equal to 

zero) is possible. The same applies for point/surface intersection. Since even with the simplest 

cases, the solution is not guaranteed to yield a solution, the same will apply to the following 

cases.  General curve/curve intersection is usually solved by minimizing the squared distance 

of function with two variables – u1 and u2 – parametric coordinates of the respective 

parametric curve, and an initial solution can be obtained by linear approximation as illustrated 

in Figure 23. Curve to surface intersections are useful and often used for solving the more 

general surface to surface intersection problems. The general problem is solved as earlier by 

minimizing the squared distance of function with now three variables; two parametric 

variables of the surface and one for the curve. Although solutions of previous problems exist 

for specialized cases, in general the problem is solved by numerical minimization of the non 

linear objective function. 

 
Figure 23. Linear approximation of parametric curve by polygon [34]. 

General surface/surface intersection algorithms that could handle a broad class of 

surfaces, and obtain a closed form intersections are difficult, if not impossible. Barnhill and 

Kersy [35] proposed a general marching method for surface/surface intersection problem.  The 

marching algorithm includes three processing steps for obtaining intersection approximations: 

obtaining start points on intersection curves; marching along intersection curves; and sorting 

disjoint intersection segments into ordered curve approximations. The procedure is the 

extension of the procedure by Barnhill [36]. The algorithm proceeds in two stages: 

- Find an initial point by solving curve/surface intersection problem between 

isoparametric curve of the first surface, and the  second surface. 

- Follow this intersection curve by producing more points in a sequential 

fashion along the intersection curve. 
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3.9. Multi-patch Parameterizations 

Any of the mentioned single patch shape parameterization methods can be used to 

generate a multi-patch parameterization by imposing the required continuity conditions on the 

boundaries. If the single patch shapes are not adjacent in parametric domain, first the 

intersection has to be calculated. When using T-splines or RBFs, multi-patch parameterization 

may even not be necessary i.e. are only necessary if topological changes are required.  

Application of multi-patch parameterization can be illustrated on chained Bezier 

surfaces. In the paper [23], chained piecewise Bezier curves and surfaces are developed to 

provide for locality and low-degree curve. Bezier patches are piecewise by definition, with 

each defined only within a partial segment of the entire domain. However, while reducing the 

problems of locality and possible oscillations, this raises an additional request of imposing and 

ensuring adequate continuity between the piecewise segments. In the framework of design 

optimization, chaining of piecewise curves should also not increase the parameterization 

complexity, as increasing the number of control points would drastically increase the 

numerical effort due to higher dimensionality of the search space. The proposed procedure in 

[23] is based on subdividing the domain into patches and chaining piecewise low-degree 

Bezier curves and surfaces into complex shapes. The procedure starts by subdividing the 

problem domain into patches, for each of which an individual approximation curve or surface 

with corresponding control points is assigned. In segments (between adjacent original control 

points) where chained surfaces are to be joined with C1 continuity, additional control points 

are interpolated as illustrated in Figure 24 using the local original points. The number of 

optimum design variables (original control points) is thereby not increased since the generated 

points depend on the original ones. 

  

 

 
Figure 24. Chaining 3

rd
 degree Bezier surfaces with C1 continuity [23]. 

3.9.1. Blending Functions 

Blends are, in-between surfaces which smoothly join multiple other surfaces. Often, 

some of the original surfaces of the object would have intersected in sharp edges (or would not 

intersect at all) and, for a variety of reasons it may be desired to replace some or all of the 
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sharp edges by the corresponding smooth faces. The blending surfaces are usually required to 

have at least G1 continuity [37].  In general, smoothing is applied not just to the edges, but to 

the whole region of the original surface of the object(s). Blending can be considered as a 

technique for design of new surfaces on basis of existing ones. Various methods for blending 

of parametric surfaces exist, of which Coon patches [38] are commonly used. They are applied 

for “filling in” between curves (surfaces).  If four arbitrary curves c1(u), c2(u) and  d1(v) , 

d2(v), are defined over  0,1u  and  0,1v  respectively, Coon patch is method of finding a 

surface P that has these four curves as boundary curves: 
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The four boundary curves define two ruled surfaces: 
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As illustrated in figure Figure 25., the ruled surface
cr  fails to reproduce d-curve, while 

d
r  fails to reproduce c-curve. Coon strategy is to try to retain what each ruled surface 

interpolates correctly, and eliminate what each fails to interpolate. This can be achieved by 

bilinear interpolant 
cdr : 
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The Coons patch can now be defined as: 

  c d cdP = r r r  (34) 

   

 
Figure 25. Coons patches: bilinearly blended Coons patch comprises two lofted 

surfaces and a bilinear surface [38]. 
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In [39] a method similar to Coon patches is developed. The developed method can be 

used to create a blending surface between two arbitrary surfaces. This method requires that a 

nonzero tangent vector at every point on the boundary curve exists and is unique. The method 

works with both parametric surfaces and implicit surfaces.    

In [40], blending method that produces G
n
–continuous parametric blend curves and 

surfaces, given two design parameters with which users can manipulate the solution. The 

blending curves are just linear combinations of the given curves (base curves) with suitably 

chosen coefficients (blending functions). The blending surfaces are linear combinations of the 

base surfaces with blending functions depending on one of the common parameters. The C
n
 

continuous blending function that “mixes” two curves (surfaces  1 ,u vP and  2 ,u vP ) is 

selected with the following properties: 

 ( ) ( ) ( )

(0) 1,    (1) 0,

(0) ,    (1) 0   for 1,...,
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f f
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Then the surface patch (blending surface),  ,B u vP : 

          1 2 1 2, ( ) , (1 ( )) , ,   , ,   0,1    B u v f u u v f u u v u u u vP P P  (36) 

Where u1 and u2 are arbitrarily selected values representing the “mixing” part of the 

original function for  1 ,u vP and  2 ,u vP  respectively. Various blending functions are 

considered, and they generally allow for modification of sharpness of the blending surface. 

Example of surface generated by this approach is illustrated in Figure 26, where the same 

blending function is used but with modified coefficient that influences the sharpness of the 

blending transition.  

 
a)      b)    

Figure 26. Example of blended surfaces with variable blending functions. [40]. 

In [41], semi-structured B-spline surface is generated by skinning a series of B-spline 

curves with different knot vectors. The B-spline surface blending problem is approached as an 

optimization problem with continuity constraints. The developed semi-structured B-spline 

surface has shown an ability to blend two base B-spline surfaces with mismatched knot 

vectors, and keep G
2
 and C

2
 continuity. In [42] s a method of G

n
 blending of multiple 

parametric surfaces in polar coordinates is presented with mechanism of converting a 

Cartesian parametric surface into its polar coordinate form. The method is applied directly to 
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filling N-sided holes without compatibility restrictions on the boundary.  The model obtains 

G
n
 continuity and NURBS compatibility. 

3.10. Isogeometric analysis 

Isogeometric analysis (IGA) has large potential of improving the efficiency of the 

overall optimization procedure by integrating shape parameterization and finite element 

method. The root idea behind IGA is that the basis used to exactly model the geometry will 

also serve as the basis for the solution space of the numerical method. Using the same basis for 

geometry and analysis is quite common in classical finite element analysis, and it is called the 

isoparametric analysis. The fundamental difference between this new concept of IGA and the 

old concept of isoparametric finite element analysis is that, in classical FEA, the basis chosen 

to approximate the unknown solution fields is then used to approximate known geometry.  

IGA turns this idea around and selects a basis capable of exactly representing the known 

geometry and uses it as a basis for the fields we wish to approximate. In a sense, we are 

reversing the isoparametric arrow such that it points from the geometry toward the solution 

space, rather than vice versa [43]. NURBS are most often used for this application.   

4. PARAMETRIC SHAPE FITTING 

The previous chapter described how to generate surfaces from a known control point 

(CP) net.  The inverse problem is also of interest; i.e., given a known set of data on a surface, 

determine the control net that best interpolates that data. This is known as shape fitting.  By 

using shape fitting of parametric surfaces to the already existing solutions of the optimization 

problem at hand, a preliminary result of a parameterization method efficiency can be obtained. 

This makes a valuable tool since numerically expensive full optimization is not required in 

order to test a parameterization method. Also, adaptive parameterization method (switching of 

parameterization methods during the optimization procedure) could be developed with the aid 

of parametric shape fitting.  

4.1. Linear fitting 

The problem of fitting is shown for illustration in Figure 27. The problem is 

determining a control polygon that generates a B-spline curve for a set of known data points. 

 
Figure 27. Determining control points polygon for a known data set. 
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If objective is that the curve passes through all data points, the following equations 

must be satisfied: 

 
0

( )   where 1,...,  and 1,...,

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n

i j i j

i

B u Q P i n j m  (37) 

 

where ( )iB u  are the basis functions (Bezier, B-spline,NURBS,…) jP are the data 

points, 
iQ are the control points. The system of equations is more compactly written in matrix 

form as: 

     B Q P  (38) 

If n=m, the problem is interpolation and simple inversion      
1

Q B P  can be used 

to obtain the control points.  For n<m, the following can be conducted by using the 

pseudoinverse: 
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In general case, the problem is solved by minimization of the following least square 

error function: 
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For surfaces, the least square error function can be written as: 
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4.2. Enhanced fitting methods 

The advanced method of non-linear fitting procedure allows for B-spline control points 

crowding and aggregation at locations of certain geometric features thus enabling good shape 

fitting while keeping low numerical complexity and high stability [44][45]. The advanced 

fitting method is crucial since the linear fitting cannot replicate the mentioned control point 

aggregation that would accrue in the case of real optimization. The fitting method is composed 

of a projection of point cloud P to a rectangular domain and obtaining an initial solution by 

linear fitting a B-spline to the projected point cloud. After the linear fitting, a gradient method 

and genetic algorithm are used for improving the solution. As opposed to classical B-spline 

fitting, the parametric coordinates (u and v) of the (point cloud) individual points are 

additional fitting variables that allow for the spline control points movement towards locations 

of certain geometric features such as the sharp edges.  In that case the error function subjected 

to minimization is: 
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where P is point cloud matrix representing the hull shape; U and V are matrices of 

parametric values: 

 

1

0 0 1

1

0 0 1

00 0

0

00 0

0

...

... ... ...

...

...

... ... ...

...

m

m m m

m

m m m

u u

u u

v v

v v

 
 

  
 
  

 
 

  
 
  

U

V

 (43) 

For the initial solution, the U and V values are fixed and only the control points 

coordinates are obtained. Before obtaining the initial solution, an ordered structured point 

cloud is required such that it can be written in matrix form. To obtain the required ordered 

distribution for U and V in the case of the full 3D spline fitting, a projection of shape from 

physical space to parametric space is required. The most- simple method is to use parallel 

sections which can individually be projected to the respective location in the parametric 

domain. However this is not appropriate for a complex hull shapes such as the DTMB hull 

illustrated in Figure 28.   

 
Figure 28 DTMB half of ship hull. 

Figure 29 illustrated the necessity of projection to rectangular domain. The line j-j 

which is the straight deck line with constant height can easily be projected to u-v domain by 

projection in y-axis direction. Similarly, the line k-k also appears that it can be easily be 

projected but in a general case, line k-k is a 3D curve. The line designated l-l is obviously a 

3D curve and it cannot be projected to the parameter space in a simple matter as the line j-j. 

Various methods of projection of 3D surfaces to rectangular domain exist. Another possibility 

is applying the spring analogy to the meshed point cloud in order to achieve a regular square 
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shape in parametric u and v coordinates [46] and applying linear interpolation to generate the 

required ordered distribution of points. Here, a procedure developed in [44] is implemented to 

achieve the required matrix topology since it provides for much better initial guess.   

 
Figure 29. Lines j-j, k-k and l-l illustrated in: a) physical space b) parametric space. 

The procedure will be illustrated on a half of the DTMB, scaled to the unit cube. The 

starting point is a triangulated surface with an unordered point cloud 
U

p  with physical 

coordinates, scaled to the unit cube as illustrated in Figure 30. The unordered points 
U

p can be 

divided into two sets of points, the first set being the boundary points 
B

p  and the second set of 

points the remaining internal points 
I

p .  

 
Figure 30 Point cloud illustration: internal points, boundary points and corner points. 
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The first step is selecting four points on the geometry boundary 
B

p , illustrated as small 

circles A,B,C and D in Figure 30.These points will be pre-set in the corners of the square u-v 

parametric domain as illustrated in Figure 31. The second step is moving the rest of the 
B

p  in-

between the pre-set corner points, thus making a subset of projected boundary points 
B

p'  as 

illustrated with shaded line in Figure 31. Spacing of the 
B

p'  points in the u-v domain between 

the respective corner points is linearly correlated to the physical distances between the points. 

 
Figure 31. Point cloud projected to rectangular parametric domain.  

Before the projection of the remaining (internal) points, designated 
I

p' ,(Figure 31) 

additional values and functions have to be defined as followed. First a pre-projection of the 

point cloud has to be conducted, for the case of a ship hull a simple y-axis projection is 

sufficient as illustrated in Figure 32.  Now the parameter of angle  can be defined as the 

angle between the vector connecting the boundary point 
B

ip  with the internal point 
I

ip  and u0 

axis in the pre-projection domain. Now the angle values ,i jp  and distance values ,i jdp  for 

each combination of boundary-internal point has to be calculated, pseudo-code as follows: 

for i=1:nI 

 for j=1:nB 

  ,i jp = calculate_angle(
B

jp ,
I

ip ) 

  ,i jdp = calculate_distance (
B

jp ,
I

ip ) 

 end 

end 

where nI is the number of internal points and nB is the number of boundary points. The 

distances ,i jdp  are calculated on the original triangulated surface by Dijkstra's method.  
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Figure 32. Definition of angle  and angle-related distance in the pre-projection 

domain. 

The functions ( )B

i p'  representing a function of projected boundary coordinates with 

respect to angle can now be created from ,i jp  and the coordinates of points 
B

ip'  by 

interpolation. The function ( )B

i p'  is different for each internal point since the boundary 

points are at different angular positions with respect to the internal point as illustrated in 

Figure 31. From ,i jp  and ,i jdp , function ( )id   for each internal point can also be created by 

interpolation. f two or more boundary points have the same angle value , points with larger 

distance d are ignored.  

The projection of each internal point 
I

ip'  is finally obtained by: 
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where fP is the projection operator, selected as: 
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Other projection operators can be used, but the above one has shown the best results. 

The value of Pf  varies from 0 to 1 depending on the ratio of closest point an angle   and 

angle   (Figure 32). If the projection is calculated only by using two angles   and   , 

the projected point would be located on the line between ( )B

i p'  and ( )B

i  p' . The point 

would divide the line in ratio ( ) / ( )  i id d . When integrated over all angles  , a smooth 
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projection can be obtained. The denominator in (45)  represents sort of normalization, an 

equivalent is the number of points in the case when the projection is achieved with finite 

number of angles   with spacing  . After projection of unstructured points 
U

p  into the 

square parametric domain, the required matrix topology of point cloud is obtained by simple 

interpolation. The fitting procedure is continued according to (42).  

4.3. Feature Detection 

Feature detection on unstructured point clouds is important for recognition of possible 

areas in which single patch (fitting) can be used when using multi-patch parameterization. For 

a known previous design, initial multi patch parameterization could be created to speed up the 

solution. During the subsequent optimization procedure, the initial multi-patch 

parameterization could be adopted to new features that appear during the optimization. Feature 

detection methods could then be applied to detect new features that are emerging during the 

optimization procedure to aid in re-patching. 

4.3.1. Point Based Methods 

Very few feature detection methods are dedicated to point-sampled geometry only 

[47]. The major problem of these point based methods is the lack of knowledge concerning 

normal and connectivity information. This means that point based methods for feature 

detection will invlove more challenges than mesh based methods. In [48], a method is 

presented that uses the computationally efficient method based on a neighbor graph 

connecting nearby points.  The algorithm first analyzes the neighborhood of each point via a 

principal component analysis (PCA). The eigenvalues of the correlation matrix are then used 

to determine a probability of a point belonging to a feature. The analysis of the ellipsoid 

formed by the three eigenvectors and their eigenvalues allows further conclusions about the 

underlying feature type. This way the algorithm can differentiate between line-type features, 

border and corner points.  The result is a quite dense set of points covering all kinds of 

features independent if the feature is sharp or not. This set of points is then reduced by 

computing a minimal spanning tree followed by a branch cutting. The method is applied to 

several examples, as illustrated in figure below, shows the extracted crease patterns of the 

torso, the fandisk and the bunny model.   

 
Figure 33. Crease patterns on torso, fandisk and bunny model [48]. 
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In [49],  the previous PCA approach is extended by the with a multi scale analysis of 

the neighborhoods. To obtain more information, a multi scaling approach that varies the size 

of these neighborhoods is used. That means they feature detection operator is applied to 

multiple neighborhood sizes, which allows to measure the persistence of the feature. This 

approach has shown to be superior to the single scale analysis as illustrated in the following 

figure but better results come with an additional computational cost. 

 
Figure 34. Multi-scale feature extraction (bottom right) is superior to single scale 

extraction (bottom left) on a noisy range scan. The top row shows the original point cloud and 

variation estimates for different scales. 

4.3.2. Polygonal methods 

There exist multiple techniques for feature extraction relying on polygonal mesh [47]. 

The following methods belong to groups of different approaches. 

Hubeli and Gross [50] use a normal based multi-resolution framework and generate a 

set of edges with a normal-based classification operator. In a classification phase they assign a 

weight to every edge in the input mesh, proportional to the probability of belonging to a 

feature. The authors provide different types of operators for different mesh types like a 

"second order difference" operator for very coarse data sets, an "extended second order 

difference" operator for finer meshes, or a computational more expensive "best for 

polynomial" operator which performs well on noisy points sets. After this, in a detection phase 

they reconstruct the features from the information gained in the classification phase. 

Hildebrand et al. [51] use anisotropic filtering on third order derivatives of the surface 

mesh. Approximation of the derivatives are calculated by discrete differential geometric 

approximations.  

Watanabe and Belyaev [52] use the so called focal surfaces to detect curvature extrema 

on dense triangle meshes. 
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All mesh-based techniques take advantage of the connectivity information and 

corresponding normals associated with the underlying mesh. Often, 3D scanning devices do 

not directly produce a mesh as raw data, but an unsorted set of point data representing the 

original surface. In this case, a mesh-based method has to rely on the proper reconstruction of 

the features during the mesh generation. 

4.4. Constrained fitting 

The constraints to be satisfied may be determined manually, or by an automatic process 

for example feature extraction methods from previous chapter. A wide range of work 

considers constraints in the context of fitting a single (possibly piecewise) free-form surface. 

In that context the constraints are typically global requirements for the surface fitted to be 

positive, monotonic or convex. Applying constraints when fairing data is a similar application. 

Local modifications of single surfaces may use constraints on control (or other) points during 

user modification of the shape of the surface. Such  approaches  are  often referred to as 

physics-based modelling: changes in shape of a dynamically deformable surface are controlled 

by a set of virtual springs attached to it, constraining its shape [53].  

The following example illustrates some problems that can appear in constrained fitting. 

A method of prioritized constraints is used. Consider a planar example that uses four 

constraints, one of which is inconsistent with the other three. The highest  priority  constraint  

requires two  straight  lines  to  be orthogonal,  the  next highest priority constraint,  in 

contradiction requires them to be parallel,  and two further constraints require one line to pass 

through the center of a circle, and the other line to be tangent to it.  The initial unconstrained 

approximation to the solution and the final state after directly enforcing constraints can be seen 

in  Figure 35a and Figure 35b. As was expected, the contradictory second constraint was 

rejected, and the other three satisfied. 

 
a)     b) 

Figure 35. Constrained fitting: a) unconstrained fitting b) constrained fitting after 

several iterations [53].  
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5. COMPUTATIONAL FLUID DYNAMICS 

Computational fluid dynamics (CFD), is undergoing significant expansion regarding 

its engineering applications, number of researchers active in the field, and also the number of 

courses offered at universities. For solving fluid flow problems, numerous software packages 

exist but still the market is not quite as large as the one for structural mechanics codes. While 

for structural problems, the finite element methods is well established, CFD problems are, in 

general, more difficult to solve. However, CFD codes are slowly being accepted as design 

tools by industrial [54]. Even if accurate CFD modeling is possible, the issue when using CFD 

as part of optimization workflow is the respective computational time required for simulation.  

 The most simple optimization problem with CFD would be single variable, single 

objective optimization. In such a case, simple gradient method could be used for the 

optimization, or even it could be carried out “by hand”, computing the full functional 

behavior, since this will be quite trivial.  In the case when CFD simulation is ideally smooth, 

still multiple minima are possible, so when starting from different initial points, two different 

solutions would be the result of optimization as illustrated Figure 36.  But often, the CFD 

simulation will not yield in ideally smooth curve but will have some “noise” added on the 

smooth function.  This makes the optimization even more difficult since even when starting 

from near global minimum, the optimization procedure will soon end trapped in local noise-

induced optimum (example illustrated by small rectangles). This illustrated that even in the 

simplest cases single objective case, the optimization is not as trivial as it seems. The gradient 

methods that are by far most efficient in optimization of smooth functions are in this case not 

directly applicable. Thus when incorporating engineering simulations in an optimization 

workflow, all components of the workflow (optimization method, shape parameterization and 

engineering simulation - CFD) need to be considered 

 
Figure 36. Schematic representation of a simple optimization problem involving a 

single parameter and a single objective. The objective function shows two minima. The exact 



45 

 

objective function is represented by the solid line while the inaccurate and more realistic case 

of CFD-based evaluation of the objective function is shown as a dashed line. 

Real optimization problems found in engineering as well as in fundamental research 

will generally involve several (often too many) shape variables and several objectives. It is 

important know the practical limits of optimization based on CFD.  The most limiting factor is 

the computing time requirement for single evaluation. Admittedly, each CFD evaluation with 

shape modification will usually lead to slightly different numerical costs but the variations are 

normally negligible relative to the overall computational cost. This means that computational 

cost depends mostly the type of simulation that is conducted, for example, on modern PC the 

following CFD simulations could be conducted: 

- one simulation of the burner considering multispecies transport and 

combustion takes typically about 20 hours of computing time and 1.8 GB of 

computer memory; 

- one simplified simulation of the turbulent channel flows requires less than 5 

seconds of computing time and 10 Megabytes (MB) of computer memory; 

- one transient 3D simulation of Darrieus wind turbine requires 16 Gigabytes 

(GB) of computer memory and about 30 days of computing time; 

By looking at the computing requirement for these few examples, it is evident that 

computational time can vary by 5 orders of magnitude and the computer memory by 3 orders 

of magnitude. This is typical of what will be found in practice: simple CFD problems can be 

solved within seconds on a standard PC; high-end CFD problems can require weeks of 

computing times and Terabytes (1 TB=1000 GB) of memory on supercomputers. In such 

cases, the limits of optimization when using CFD are clear in principle: CFD based 

optimization is possible for simple CFD problems and almost impossible for high-end CFD 

configurations. To somewhat quantify the possibilities, considering again the earlier examples: 

- only 64 evaluations corresponding to realizable configurations have been 

conducted in [5].  for the burner involving multispecies transport, and this 

already at an extremely high computational cost; 

- on the other hand, more than 5000 evaluations have been easily carried out 

for the simplified turbulent channel flow; 

- for the transient 3D simulation of Darrieus wind turbine lasting 30 days, no 

practical optimization could be conducted. 

As a rule of thumb for engineering practice, it seems therefore appropriate to state: 

CFD based optimization is possible when the duration of a single CFD computation does not 

exceed a few hours at most [5]. Practical limits of CFD optimization are illustrated in 
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Table 1 for a modern PC. 
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Table 1. Practical limits of CFD optimization for a modern PC. 

Evaluation cost Optimization cost for  

≤2 parameters 

Optimization cost for 

 ≥3 parameters 

low cost  

(2 min CPU, 100 MB memory) 

very easy easy up to 20 parameters 

medium cost  

(1h CPU, 1000 MB memory) 

very easy still possible 

high cost  

(20h CPU, 10 GB memory) 

still possible almost imposible 

 

In order to achieve improvements in optimization speed, adjoint methods explained in 

chapter 2.5. Adjoint system must first be identified for the considered system of equation. 

While this is easily done (and well documented in the literature), e.g. for the Euler equations, 

the task will become much more difficult when considering complex, multiphysics problems. 

Furthermore, the adjoint approach requires a full knowledge of the intermediate 

approximations on a way to the full solution of the system of equations solved by CFD. In 

simple words, this means that the adjoint approach, while greatly reducing the number of 

evaluations (and computational time), will lead to a huge increase of the requested computer 

memory which will again become a major problem for complex, three-dimensional flows 

involving many unknowns at each discretization point [5].  

 
Figure 37. Principle requirements of CFD based optimization (CFD-O) in terms of 

computing time and computer memory. Again, the figures listed here are just orders of 

magnitude, and should by no means be considered as exact limits[5]. 

Adjoint approach (by default) used gradient optimization methods and is accompanied 

with all of the disadvantages of gradient methods such as finding only the nearest local 

minimum. For a generic optimization task with ambition to find a global solution this 

approach can be helpful but it cannot be used exclusively. This doctoral qualifying exam aims 

mostly at investigating efficient shape parameterization techniques that could be used in any 

engineering simulation (structural, multiphysics…) involving SO. But CFD is used since it is 
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widely applied in combination with SO, and it illustrates many problems accruing when using 

engineering simulations.  The following chapters will briefly layout the basics of CFD. 

5.1. Fluid flow equations 

Fluids are substances whose molecular structure offers no resistance to external shear 

forces: even the smallest force causes deformation of a fluid particle. For most engineering 

applications, a fluid is regarded as a continuous substance (continuum).  Flow equations can 

be given by multiple conservation law. For mass, which cannot be created or destroyed, the 

conservation equation can be written (for a control mass, CM): 
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where m stands for mass and t for time, 
D

Dt
 is the material derivative (later D will be 

used for rate of strain tensor). As opposed to mass the amount of change momentum is not 

equal to zero. Newton's second law of motion states that: 
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where v is the velocity, and f is the forces acting on the control mass. Left hand side of 

equations (46) and (47)  can be generalized for conservation of an intensive property . This 

generalization written as integral equation: 
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where CM
 stands for volume occupied by the control mass   is density , CV

 is the 

control volume (CV) volume, SCV is the surface enclosing CV, n is the unit vector orthogonal 

to SCV and directed outwards, v is the fluid velocity and 
bv  is the velocity with which the CV 

surface is moving. For mass conservation  = 1, for momentum conservation   =v.  For 

common case of a CV fixed in space, 
bv = 0 and the first derivative on the right hand side 

becomes a local (partial) derivative. This equation states that the change of the amount of 

property in the control mass CM
 is the rate of change of the property within the control 

volume plus the flux of it through the CV boundary caused by the fluid motion relative to CV 

boundary. The flux is called the convective flux of   through the CV boundary.  The 

integral form of the mass conservation (continuity) equation in case of fixed control volume 

follows directly from (48) by setting  = 1: 
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 Again for a fixed control volume, the momentum conservation equation is obtained by 

setting  = v  and combining with (47). The resulting equation is: 

 d d  
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v vv n f  (50) 

 

Continuity equations can also be written in coordinate-free differential form by 

application of Gauss divergence theorem to the second term and reducing the volume to 

infinitesimally small. To express the right hand side in terms of intensive properties, surface 

forces and body forces have to be considered. 

The surface forces are from the molecular point of view, the microscopic momentum 

fluxes across a surface, macroscopically represented by pressure and stresses.  If these fluxes 

cannot be expressed by density and velocity, the system of equations is not closed since there 

would be fewer equations than dependent variables. By making assumptions that the fluid is 

Newtonian (it is in most practical engineering applications), a closed system of equations can 

be assured.  For Newtonian fluids, the stress tensor T, which is the molecular rate of transport 

of momentum, can be written (using index notation): 
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where,  is the dynamic viscosity, I is the unit tensor, p is the static pressure and D is 

the rate of strain (deformation) tensor:  
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The body forces per unit mass can be represented by force vector b, so the integral form of the 

momentum conservation equation now becomes: 

 d d T d d    
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The equation (53) with (51) and (52) included is the most general form of momentum 

conservation equation for Newtonian fluids. All fluid properties (density,…) can vary both in 

space and in time. However in many applications the fluid density is practically constant. 

Constant density may be assumed for most liquid flows, but also for gases in case of low 

Mach number (<0.3).  Such flows are called to be incompressible. However this simplification 

is generally not of a great value, as the equations are similar to the original ones regarding 

difficulty of obtaining a solution. However, assuming constant density and viscosity does help 

in numerical solution and it should be implemented if the problem allows it. In addition to 

simplification to incompressible flow, various other simplifications are used depending on the 

conducted simulation. It is important to know what simplifications can reasonably be used to 

lower the computational time but still keep sufficient simulation physics so that the correct 

optimal solution can be obtained in a reasonable computational time. 
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5.2. Turbulence models 

Most flows encountered in engineering application are turbulent. Turbulent flow main 

characteristics are the following: 

- Turbulent flows are very unsteady. Velocity magnitude plotted as a function of 

time appears almost random;   

- Turbulence is a three-dimensional phenomenon. While the time-averaged velocity 

at a point may be a function of only two coordinates, turbulent flow has 

fluctuations in all three spatial dimensions; 

- Turbulence increases the “mixing” rate of the conserved quantities. This means that 

fluid areas of differing momentum content are also mixed. While the actual mixing 

is achieved by (viscous) diffusion, this process is called turbulent diffusion.  

- Turbulent flows require simulation of a broad range of length and time scales. The 

wide range of turbulent flows length and time scales is numerically very 

demanding.  

The most accurate approach to turbulence simulation is to directly solve the governing 

equations (49) and (53) (Navier-Stokes equations).  This is the simplest approach from the 

conceptual point of view. In such simulations, all of the motions contained in the flow are 

resolved. The obtained flow field is equivalent to a single laboratory experiment, this approach 

is called direct numerical simulation (DNS). In engineering applications, usually just a few 

quantitative properties of a turbulent flow, such as the forces on a body (or torque) are of 

practical interest. Furthermore, only the time average of the quantitative properties is sufficient 

in most cases. Using the DNS to compute these quantities is not practical and even not 

possible with today’s computers. Even a single simulation of the simplest practical flows such 

as flow about airfoil (thin) section requires hours of computational time on modern 

supercomputers [55]. Application of DNS for practical optimization is thus not an option.  

Based on ideas proposed by Osborne Reynolds over a century ago, so called Reynolds-

averaging method was developed. In a statistically steady flow, every variable can be written 

as time-averaged value plus a fluctuation about that value: 

 ( , ) ( ) ( , )   i i ix t x x t  (54) 

where 
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Here t is the time and T is the averaging interval. This interval must be large compared 

to the typical time scale of the fluctuations i.e. T If T is large enough,  does not depend 

on time at which the averaging is started. If the flow is unsteady, time averaging cannot be 

used and it must be replaced by ensemble averaging (Figure 38): 
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Figure 38. Time averaging for statistically steady flow and ensamble averaging for 

unsteady flow [54]. 

Since   = 0, averaging any linear term in the conservation equations simply gives the 

identical term for the averaged quantity. From a quadratic nonlinear term two terms are 

obtained, the product of the average and a covariance:  

 ( )( )           i i i i iu u u u u  (57) 

 

The last term is zero only if the two quantities are uncorrelated but this is rarely the 

case in turbulent flows. So the conservation equations contain terms such as   
i ju u  called the 

Reynolds stresses, and   iu , known as the turbulent scalar flux, among others. These cannot 

be represented uniquely in terms of the mean quantities. The averaged continuity and 

momentum equations in the case of incompressible flows (and body forces excluded), can be 

written in index notation and Cartesian coordinates as: 
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where the  ij  are the time-averaged (mean) viscous stress tensor components: 
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Finally the equation for the mean of a scalar quantity can be written: 
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The presence of new terms in the conservation equations namely Reynolds stresses and 

turbulent scalar flux, means that the equations are not closed i.e. they contain more variables 

than there are equations. Closure requires use of some approximations, which usually take the 

form of prescribing the Reynolds stress tensor and turbulent scalar fluxes in terms of the mean 

flow quantities. Equations for the higher order correlations have also been derived, for 

example for the Reynolds stress tensor, but these contain still more (and higher-order) 

unknown correlations that require modeling approximations. In any case it is impossible to 

derive a closed set of exact equations. To close the system of equations turbulence models are 

introduced. A reasonable model is obtained by noting that in laminar flows, energy dissipation 

and transport of mass, momentum, and energy normal to the streamlines are mediated by the 

viscosity. So it is natural to assume that the effect of turbulence can be represented as an 

increased viscosity [54]. This leads to the model for the Reynolds stress according to 

Boussinesq eddy-viscosity assumption, ijR : 
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and the eddy-diffusion model for a scalar: 
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In (62), k is the turbulence kinetic energy:  

  
1 1

2 2
          i i x x y y z zk u u u u u u u u  (64) 

Although the eddy-viscosity hypothesis is not correct exactly, it is widely used, easy to 

implement and its application has shown reasonably good results for many flows. In the 

simplest description, turbulence can be characterized by two parameters: its kinetic energy, k, 

or a velocity, 2q k , and a length scale, L. Dimensional analysis shows that: 

  t C qL  (65) 

where C , is a dimensionless constant whose value is determined by the turbulence 

model. In the simplest practical models, mixing-length models, k is determined from the mean 

velocity field using the approximation /  q L u y  and L is a prescribed function of the 

coordinates (usually dependent on distance to the nearest wall). Problem is that accurate 

prescription of L is not possible for complex 3D flows. Thus mixing-length models can be 

applied only to relatively simple flows.  These models are also known as zero-equation 

models. 

Two-equation turbulence models are often used for numerical modeling of turbulent 

flow since they are robust, have shown good results and in numerical terms only modestly 

expand the system of governing equations.  
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5.2.1. RANS equations 

The continuity and momentum equations in Reynolds averaged differential form can 

be summarized, in tensor notation and Cartesian coordinates as: 
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where  , p  and 
iu  are the mean flow density, pressure and the Cartesian velocity 

components respectively: ix  is the Cartesian coordinate;   is the molecular viscosity; The 

specific body force 
if  includes external body forces such as gravity in this case. Turbulent 

viscosity t  and turbulence kinetic energy k are obtained from a selected turbulence model. 

The continuity and momentum equations in some cases have to be solved together with energy 

conservation equation: 
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Where h  is enthalpy; k thermal conductivity; 
tk is the thermal conductivity due to 

turbulence and is defined by turbulence model; T  is the temperature ;
hS  is volumetric heat 

source; and e  (specific total internal energy) can defined by: 
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5.3. Computational domain discretization 

Most often in CFD, the finite volume method is implemented to discretize the 

computational domain.  It uses the integral form of the conservation equation as the starting 

point: 

 
dS ( ) dS d  
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S S
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The usual approach is to define control volumes (CVs) by a suitable grid and assign 

the computational node to the CV center, see Figure 39. Nodes on which boundary conditions 

are applied are shown as full circles in this figure. The derivatives that appear in conservation 

equations are approximated by finite differences. Domain discretization methods are very 

important since computational time can be reduced by an order of magnitude while keeping 
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good computational physics if appropriate methods are used. Also, mesh generation can take a 

considerable amount of time of overall evaluation of a shape generated by the optimizer. 

 
Figure 39. Finite volume schematic representing nodes and faces. 

5.3.1. Isogeometric analysis in CFD 

While the isogeometric methods (IGA) are more and more applied in structural 

problems, their application in CFD has shown to be more challenging [43]. This is in part due 

to the wide range of scales present in such problems, and also to the fact that these scales 

frequently interact with each other in complex ways. Failure to properly represent these 

interactions can result in inaccurate and/or unstable calculations. The keys to success when 

performing computational fluids analysis are accuracy and robustness. These attributes may or 

may not be possessed by the methods and functions used to approximate solutions. NURBS 

are functions that satisfy both of these criteria and seem to be an ideal basis for fluid 

mechanical applications. Incompressible turbulence is a highly nonlinear problem, and it 

requires solving of extremely wide range of scales. Success in capturing the character of the 

solution relies on two key components: a basis capable of accurately representing both large 

and small scales and a formulation that encapsulates the effect of the scales that are simply 

beyond reach. NURBS based isogeometric analysis, paired with the variational multiscale 

method explained in shortly in [43] provides both. Still, IGA is far from widespread 

application as FV methods are very well developed and still show superior performance. 

Nevertheless IGA is of great importance for this doctoral qualifying exam since large 

improvement capacity exists in integrating the overall procedure of shape parameterization, 

numerical simulation and optimization methods. 

IGA is successfully used for estimating ship resistance problem by boundary element 

momentum method (Neumann-Kelvin problem) and it is considered that it is applicable for 

systematic calculations involved in hull optimization problems [56].  It was shown as 

illustrated in Figure 40. that a good agreement with experimental data is obtained. 
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Figure 40. Wave resistance coefficient CW of the Wigley hull forvarious Froude 

numbers, as calculated by the IGA tmethod (redbullets). Comparison with experimental data 

(blacksquares) and an other panel method (thin dashed curve) [56]. 

Also IGA is appropriate for fluid structure interaction problems, for example used on 

windturbines for 2D problem [57]. Another interesting example is application of IGA (in 

structural applications) in combination with gradient based optimization with application of 

sensitivity analysis [58]. 

5.3.2. Solution of discretized equations 

In the previous chapters IGA and FV methods were considered as means of 

computational domain discretization. In either case, the result of the discretization process is a 

system of algebraic equations, which are linear or non-linear according to the nature of the 

partial differential equations from which they are derived. In the non-linear case, the 

discretized equations must be solved by an iterative technique that involves guessing a 

solution, linearizing the equations about that solution, and improving the solution; the process 

is repeated until a converged result is obtained. So, whether the equations are linear or not, 

efficient methods for solving the linear systems of algebraic equations are needed. The 

selection solving method is an important step, since order magnitude in computational time 

can be lost if inappropriate method is chosen. Various guidelines (for example ANSYS Fluent 

help [59]) exist but the appropriate method is problem dependent. 

After the solution is obtained the last step is post-processing of the flow field. This 

usually includes integrating surface forces (or forces*distance to obtain torque) on boundaries 

that represent the object of optimization. This value is finally sent to the optimizer and the 

whole process is repeated till the convergence criteria are met. 

6. CHALLENGES AND FUTURE WORK 

Engineering shape optimization with integrated numerical simulations is a demanding 

multidisciplinary problem and various methods for conducting the optimization procedure 

exist. While various different numerical simulations could be required, this doctoral 
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qualification exam considers CFD because of its wide usage in combination with shape 

optimization. Also, CFD involves problems such as time-consuming simulations and non-

linear governing equations, making it a representative of common engineering numerical 

simulation. To solve such problems, computational efficiency and global optimization 

methods are required.  

After a review of optimization methods, two approaches could be highlighted: 

gradient-based adjoint method, appealing because of its computational efficiency; and an 

integrated numerical workflow based on genetic-algorithm (GA), attractive since it offers a 

generic approach to wide array of optimization problems. While the adjoint method offers a 

promising solution with fast optimization times, it has several disadvantages. First, it is not 

suitable for global optimization since it is by nature gradient-based. Since the objective 

function(s) and constraints are highly nonlinear, it is unlikely that a global optimum will be 

reached from an arbitrarily selected initial solution. Engineering optimization can also contain 

discrete variables which cannot be solved by classical gradient methods.  Furthermore, 

engineering optimization problems usually involve several objectives, making them suitable 

for GA based methods. A generic engineering shape optimization task can be solved by 

linking GA with shape parameterization methods, and (multiple) engineering simulation nodes 

in an integrated numerical workflow.  Nevertheless, fast gradient based methods could 

eventually be implemented when the GA obtains a solution close to the global optimum.  

When using GA, each generated shape needs to be subject to time consuming CFD 

simulation. One of the major concerns in this kind of optimization is that large number of 

simulations requires great computational effort. So in order to setup numerical workflow 

efficiently, one of the most important parts of the optimization problem is selecting a suitable 

parameterization method. If parameterization is selected such that the respective geometry can 

be described with small number of parameters, number of necessary simulations can be 

reduced to lower computational effort towards practical realization of optimization 

procedures.  

This doctoral qualification exam gives an overview of shape parameterization method 

that could be implemented in the numerical optimization workflow. The most promising are 

the Bezier family of parametric surfaces, B-spline, NURBS and T-splines. They have 

favorable properties of local control, abilities for reproducing sharp edges.  Additionally, 

possibility of multi-patch parameterization enables reduction of control points in “smooth” 

areas of shape and increasing the shape resolution in areas of large geometry changes. This 

gives a possibility for reduction in the number of variables.  A review of current research 

papers does not provide for a universal method and leaves room for further improvements. 

Parametric shape fitting methods applied on existing shapes can be used as a method for 

evaluating individual shape parameterization methods. This can also be possible conducted 

even during the optimization which allows for switching between different parameterization 

methods.  Finally an introduction to CFD and review of optimization methods applied with 

CFD is given. Another possible improvement can be obtained by unifying parameterization 

methods with simulation by isogeometric analysis.  
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Expected scientific contributions of doctoral thesis are: 

- Reduction of the number of shape variables while keeping the shape 

generality in an engineering optimization task i.e. development of a more 

efficient parameterization methods; 

- Development of adaptive parameterization methods for switching between 

different shape parameterizations during the optimization procedure; 

- Development of variable length chromosomes for adaptive multi-patch 

parameterization to enable smooth transitions between shapes during the 

optimization procedure, 
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