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Efficient Parameterization Methods for Generic Shape Optimization with 

Engineering Applications 

 

Abstract 

 

Engineering optimization very often includes complex and computationally expensive 

numerical simulations with time requirements ranging from few seconds to months per single 

simulation, depending on the simulated physics and available computational resources. Such 

optimization tasks should therefore contain no more than a small, yet sufficient number of 

optimization variables. Additional difficulties arise when the underlying physics has nonlinear 

character modeled by nonlinear partial differential equations. The most common cases of 

engineering optimization involving computationally very expensive nonlinear simulation 

include problems in computational fluid dynamics. Furthermore, technical objects considered 

in fluid dynamics (ship hulls, wind-turbines or fan blades,…) are almost always complex three-

dimensional shapes that cannot adequately be described with only a few shape variables. The 

most commonly used tools for generic shape representation are B-spline and NURBS curves 

and surfaces. When a shape is too complex to be represented by a single surface, mutually 

connected surface patches can be used. In recent years, a generalization of B-splines called T-

splines is also increasingly used.   

The first objective of this doctoral thesis is the development of genetic shape 

parameterization methods for solving selected engineering optimization problems. This includes 

integration of all needed elements (shape parameterization, numerical analysis and 

optimization) in an integrated numerical workflow. The second objective is the development of 

more universal advanced shape parameterization methods that can aid in the reduction of the 

overall time required for shape optimization. 

 

Keywords: shape optimization, engineering optimization, shape parameterization, B-

spline, CFD 
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Metode učinkovite parametrizacije za generičko optimiranje oblika s 

inženjerskim primjenama 

 

Kratki sažetak 

 

Inženjerska optimizacija često sadržava složene i računalno skupe numeričke simulacije 

s računalnim vremenskim zahtjevima od nekoliko sekundi do nekoliko mjeseci po simulaciji, 

ovisno o simuliranoj fizici i dostupnim računalnim resursima. Ovakvi optimizacijski zadaci 

stoga ne mogu sadržavati nego mali broj optimizacijskih varijabli. Dodatne teškoće nastaju kada 

je problem opisan nelinearnim parcijalnim diferencijalnim jednadžbama. Primjer inženjerske 

optimizacije s računski zahtjevnim simulacijama i nelinearnim modelima vrlo često uključuju 

računalnu dinamiku fluida. Uz sve navedeno, tehnički objekti u dinamici fluida (trup broda, 

lopatice vjetro-turbine ili ventilatora,…) često su kompleksni trodimenzionalni oblici koji se ne 

mogu adekvatno opisati s malim brojem varijabli oblika. Najčešće korišteni alati za zapis 

generičkih krivulja i ploha su B-spline i NURBS plohe. Kada je oblik previše složen da bi se 

opisao s pojedinačnom plohom, može zapisati i pomoću više ploha spojenih po dijelovima. 

Posljednjih godina se u te svrhe koristi i generalizacija B-spline, takozvani T-spline.  

Prvi cilj ovog doktorskog rada je razvoj metoda generičke parametrizacije oblika za 

rješavanje odabranih problema inženjerske optimizacije. Ovo uključuje i razvoj numeričkih 

radnih tokova koji integriraju sve potrebne elemente (parametrizacija oblika, numerička analiza 

i optimizacija). Drugi dio doktorskog rada je razvoj naprednih metoda parametrizacije koje su 

primjenjive za opći slučaj parametrizacije oblika i omogućavaju ubrzanje sveukupnog procesa 

inženjerske optimizacije oblika. 

 

Ključne riječi: optimizacija oblika, inženjerska optimizacija, parametrizacija, B-spline, 

računalna dinamika fluida 
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1. INTRODUCTION 

The introduction section first presents the motivation of the doctoral thesis and the 

respective hypothesis. Next the scientific methodology used to confirm the posed hypothesis is 

presented together with the scientific contributions. The contribution is based on papers papers 

[1]–[8] that are listed in a separate subsection. An overview of the remaining doctoral thesis is 

given at the end of the introduction section. 

1.1. Motivation and hypothesis 

Shape optimization (SO) is a rather complex undertaking which involves many 

challenges but  nevertheless becomes a necessity in several industries [9].  SO is a part of 

computational mechanics and can be subdivided in three branches: sizing optimization (for 

example thickness distribution), shape optimization itself and topology optimization [10]. This 

doctoral thesis will focus on engineering application of shape optimization itself, but variable 

shape topology will also be considered.   

In SO, the system subject to optimization is usually described by partial differential 

equations (PDEs). In recent years, the field of optimization of systems based on PDEs has 

received a large impulse with a variety of research projects being funded by national and 

international agencies [11], [12]. In engineering application of SO, the optimization problems 

usually contain multiple mutually conflicting objectives functions, modeled by very different 

computational methods.  This causes difficulties in engineering applications of methods 

developed specially for solving a specific type of PDEs. This doctoral thesis gives a review of 

methods required for generic engineering SO of complex engineering systems. 

  A common example of complex engineering optimization tasks includes computational 

fluid dynamics (CFD), a system modeled by (nonlinear) PDEs.  Concerning CFD, the first 

applications of optimization are found for aeronautical problems, in particular to improve wing 

profile and flight properties (typically, reduce drag) [13].  CFD models are a major concern as 

appropriate turbulence models and domain discretization exhibit a major influence on the 

simulation results and require substantial computing resources. These tasks also include 

complex 3D shapes such as ship hulls, wind-turbine blades, fan vanes, etc. Computational 

modeling of the respective geometry is correspondingly difficult as modeling of both global and 

local variations of shape is required. Furthermore, only a modest-size data-set of shape 

parameters has to be used, since otherwise the dimensionality of the subsequent optimization 

space is very high. The most often solution of these problems is to apply local SO while keeping 

most of the 3D shape fixed i.e. ignoring the global character.  In any case, an integrated 

optimization workflow must be constructed to contain (at least) a geometry modeler and an 

engineering simulation node controlled by the optimizer.  

The objective of this doctoral thesis is the investigation of existing and development of 

improved methods that can increase the efficiency of engineering SO problems. Particularly, 

consideration is given to the application in complex numerical simulations (such as CFD) within 
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an integrated optimization workflow. Methods for both global and local variations of shape will 

be investigated. The major part of the doctoral thesis is concerned with geometry modeling since 

much research is currently directed towards geometry modeling methods (Bezier, B-spline, 

multi-patch parameterizations,…) and an universal approach does not exist. It is also important 

to understand the physical principles and engineering models used in the engineering simulation 

node of the workflow. Without an efficient numerical simulation, parameterization method will 

not be able to show its full potential no matter how well selected.  The optimizer controlling the 

shape variations within the numerical workflow is also a major concern. Depending on the 

optimization problem, a different optimization algorithm (genetic algorithm, gradient 

method,…) may be appropriate. For example, a gradient method will not be able to improve the 

solution in the case of a “noisy” objective function. An opposing case would be the case of local 

optimization with a smooth objective function where a genetic algorithm will eventually obtain 

a solution but the application of a gradient method can save orders of magnitude of 

computational time. 

The thesis hypotheses are as follows: 

- It is possible to reduce the number of shape variables by application of B-spline 

surfaces and advanced shape parameterization methods while keeping the shape 

generality during the shape optimization. Since the time required for conducting an 

engineering optimization task depends on the number of variables, the number of 

variables can be considered sufficiently low if the optimization can be conducted in 

a reasonable amount of time (order of magnitude of several days). The shape 

generality means that the search space contains a wide array of possible shapes that 

can be expected for a given optimization task.  

- After the previous hypothesis is shown to be correct on several test examples, 

various algorithms to aid the shape optimization procedure could be developed. A 

method of adaptive fitting based on scalar field could be used for two different 

applications. First, it can be used to aid the preparation of shape parameterization 

based on existing solutions. Here, the scalar field would use a geometric error 

between the shape parameterization and the existing solutions. This results in better 

distribution of the parametric surface control points, meaning that the control points 

will be clustered at geometrically complex areas while moving away from the flat 

regions. The adaptive fitting procedure could also be used during the optimization 

quasi-time. Here, a scalar field such as acting forces or sensitivity with respect to an 

objective function would be used for control-points re-distribution. Another 

application of adaptive fitting would be fitting of one type of shape parameterization 

(phenotype) to a different type thus allowing crossover between multi-patch 

parameterizations with a different number of partitions and variables (genotypes).  
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1.2.  Research methodology and scientific contributions 

The first part of the research is the development of efficient shape parameterization using 

integral surfaces on several different engineering examples and conducting the shape 

optimization. Thus, several shape parameterization methods for specific applications must be 

developed. This requires development of various numerical workflows which can be used for 

testing different shape parameterizations as a part of the engineering optimization. Numerical 

integration of the required elements in the form of a workflow is not trivial since it needs to 

encapsulate both process flows with synchronization of processes and the necessary data-

mining. The data transfers within the workflow include results for all candidate designs. On the 

input side of the engineering simulations (CFD,…), the current shapes of the candidate designs 

need to be communicated to the simulators (‘data-burying’). As the engineering object generally 

functions across a range of operating regimes, a good definition of the excellence criteria is also 

crucial. Moreover, the design variables may include additional parameters beyond those which 

control the shape, including discrete variables. Some of the variables can be given only as 

statistical distribution, making the problem even more difficult. A schematic of a general 

workflow is illustrated, Figure 1. Corresponding data mining is represented with vertical 

direction while the coordination of process is represented by the horizontal direction.  

 

 
Figure 1. Typical multidisciplinary shape optimization workflow with CFD simulator. 

A generic engineering SO task has the following elements: 

1. For an engineering object and corresponding operating conditions the objectives and 

constraints have to be defined; 

2. Numerical simulations are conducted (and developed) to confirm that the computer 

model is able to replicate reality for the required operating conditions. Typically multiple 

test cases are conducted and compared with experimental results; 

3. Fine tuning of the numerical simulation to improve the computational efficiency and 

keep the required accuracy; 

4. Real-life solutions of a similar problem already exist, but they are not optimal for a 

particular optimization objective.  The shape of the pre-existing solutions can be used as 
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a starting point of SO task.  If the geometry file is not available, 3D optical scanning can 

be used to provide the point cloud representing the initial shape; 

5. Parameterization of the 3D point cloud into computational geometry entities (NURBS, 

T-spline,…) provides for optimization parameters. Fitting procedures can be used to 

evaluate the performance of parameterization and in this way the most appropriate shape 

parameterization procedure can be selected; 

6. Definition of the excellence criteria and objective functions for the optimizer such that 

the fitness functions for the candidate designs can be evaluated. In the case of multi-

regime operation, numerical sample of operating regimes has to be generated in order to 

evaluate excellence; 

7. Definition of the optimization constraints. A common example is setting the bounds for 

the selected parameterization control point mobility. Further constraints can be related 

to non-shape variables (mass, stress, temperature, revolution velocity, etc.). 

8. Initial solution or a set of initial solutions based on the selected parameterization is 

generated; 

9. Launching the optimizer with corresponding operators and parameter values. Most often 

a genetic algorithm-based optimizer is selected. This requires a setup of selection 

operators, cross-over operators and probabilities, mutation, elitism, fitness scaling, etc; 

10. Linking an array of engineering simulators to provide values of excellence and 

constraints for all candidate designs represented by corresponding shape 

parameterization.  

11. Iteratively shape-optimizing the engineering object within the numerical cycle 

embedding the optimizer, shape modeler and engineering simulators (CFD, etc.). 

Elements of the engineering SO tasks (3), (5) and (9) have the most potential to be 

improved and are the topics of interest in this doctoral thesis. The focus was mainly put on step 

(5) since new emerging shape parameterization and fitting procedures are not yet sufficiently 

tested in the context of generic shape engineering optimization, hence leaving room for 

improvement. Since various different engineering optimization problems will be conducted, a 

general conclusion regarding the application of the integral parametric surfaces can be obtained. 

The second part of research is the development of an adaptive fitting procedure which 

allows easier testing of different shape parameterization methods without a time-consuming 

optimization. This adaptive fitting method should be based on an adaptive control-points 

redistribution based on various scalar fields which can be selected based on the optimization 

objective. In shape fitting, the scalar field is a geometric error between the shape 

parameterization and the pre-existing solutions. When using the adaptive fitting procedure 

during the optimization quasi-time, a scalar field such as sensitivity with respect to an objective 

function should be used for control-points re-distribution. Finally, a concept for a procedure of 

fitting different shape parameterizations to each other can be developed. This opens possibilities 

of application of genetic algorithm operators such as crossover to mutually different genotypes.  
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Scientific contributions of the doctoral thesis are: 

- It was shown that by using an integrated B-spline surface it is possible to 

reduce the number of shape variables while keeping the shape generality in 

an engineering optimization task, i.e. more efficient parameterization 

methods were developed. 

- Several original optimization workflows for specific engineering shape 

optimization problems were developed. 

- An adaptive parameterization method which can enable testing of different 

shape parameterizations before the actual optimization procedure was 

developed. The same method could be used for dynamic control-point 

redistribution during the optimization quasi-time. Various scalar fields can 

be used such as the sensitivity field with respect to an objective function. 

- It was shown that adaptive fitting can be used to convert different 

parameterization types (patch topologies) to the same single-patch 

parameterization. This allows for usage of variable length chromosomes and 

multi-patch parameterization in the same optimization. It was shown that a 

smooth crossover between various shapes of different patch topologies is 

possible. 

1.3. List of complementary papers 

This doctoral thesis presents the basis and offers a short survey for the papers [1]–[6], 

[8], [7]  along with overall conclusions which can be obtained from them.  The following is the 

list of  papers: 

[1] Z. Milas, D. Vučina, and I. Marinić-Kragić, “Multi-regime shape optimization of 

fan vanes for energy conversion efficiency using CFD, 3D optical scanning and 

parameterization,” Eng. Appl. Comput. Fluid Mech., vol. 8, no. 3, pp. 407–421, 

2014. 

[2] I. Marinić-Kragić, D. Vučina, and Z. Milas, “3D shape optimization of fan vanes 

for multiple operating regimes subject to efficiency and noise-related excellence 

criteria and constraints,” Eng. Appl. Comput. Fluid Mech., vol. 10, no. 1, pp. 210–

228, 2016. 

[3] D. Vučina, I. Marinić-Kragić, and Z. Milas, “Numerical models for robust shape 

optimization of wind turbine blades,” Renew. Energy, vol. 87, pp. 849–862, 2015. 

[4] I. Marinić-Kragić, D. Vučina, and Z. Milas, “Numerical workflow for 3D shape 

optimization and synthesis of vertical-axis wind turbines for specified operating 

regimes,” in European Wind Energy Association Annual Conference and Exhibition 

2015, 2015. 

[5] I. Marinić-Kragić, P. Bagavac, and I. Pehnec, “Reverzno inženjerstvo i dvo-

stupanjska optimizacija brodskog vijka i sapnice pomoću B-spline ploha,” in Sedmi 

susret hrvatskog društva za mehaniku, 2016, pp. 121–126. 

[6] I. Marinić-Kragić, D. Vučina, and M. Ćurković, “Efficient shape parameterization 
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method for multidisciplinary global optimization and application to integrated ship 

hull shape optimization workflow,” Comput. Des., vol. 80, pp. 61–75, Nov. 2016. 

[7] I. Marinić-Kragić, Z. Milas, and D. Vučina, “Numerical analysis of energy 
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1.4. Thesis overview 

The introduction section first presented the motivation of the doctoral thesis and the 

respective hypothesis. Next the scientific methodology used to confirm the posed hypothesis 

was shortly explained. More detail about the elements of the used tools and methods are 

presented in section 2 and section 3. Section 2 presents the methods used for generic shape 

optimization which are required for the first part of the hypothesis. The section 3 presents the 

methods for shape fitting and shape manipulation that are required for the second part of the 

hypothesis. This introduction section has already presented the list of the scientific contributions 

while the papers on which the contribution is based are reviewed in section 4. The contribution 

of the author is presented separately for each paper. The final sections are the conclusion section, 

recommendation for future work and the bibliography. 
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2. ELEMENTS OF NUMERICAL OPTIMIZATION WORKFLOW 

All of the components of the optimization task can be integrated in a single numerical 

workflow controlled by the optimizer based on the selected optimization methods. After the 

initial solution is selected (based on earlier designs or randomly generated), the direction of the 

shape modification is controlled by the selected optimization algorithm. The result of the 

engineering optimization task is of course primarily dependent on the selected optimization 

method. This section will briefly describe important optimization methods and when is it 

appropriate to apply one or the other since no single superior approach exists. Further 

improvements that could improve the convergence speed of numerical optimization are also 

briefly described, for example a surrogate model can be introduced in the optimization 

workflow.  

Engineering SO problems usually belong to class of continuous nonlinear multi-

objective optimization (MOO) although discrete variables can be present. Methods for solving 

continuous MOO problems can be roughly divided in methods relying on standard optimization 

engines (single-objective optimization methods) such as gradient methods, and other approaches 

such as genetic algorithms [14]. When discrete variables are present in a MOO problem, genetic 

algorithms represent an appropriate and robust but computationally more demanding method.  

2.1. Numerical optimization 

Most engineering optimization problems involve multiple excellence criteria. Single-

objective optimization is a special case with number of objective functions equal to one. A 

general multi-objective problem can be posed: 

 

 1 2Minimize ( ) = ( ), ( ), ..., ( )

( ) 0,         1,2,...
Subject to

( ) 0,        1,2,...,

   
 

   

T

k

j

l

F F F

g j m

h l e

x
F x x x x

x

x

 (1) 

 

where m is the number of inequality constraints, and e is the number of equality 

constraints, k is the number of objective functions,  ( ) k
F x  is a vector of objective functions 

1( ) : niF x . ( )iF x  are the objective functions, whereby an individual function is a mapping 

from the design space to single objective space.  The gradient of a function ( )iF x  with respect 

to x  is written as ( )  n

iFx x . The point *ix  minimizes the objective function ( )iF x .  The 

feasible design space X  is defined as the set { ( ) 0, 1,2,... ; ig i mx | x and

( ) 0,  1,2,...,    } ih i ex .  Each point in the design space maps to a point in criterion space, but 

every point in the criterion space does not necessarily correspond to a single point in design 

space. 
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In comparison to single-objective optimization, the solution of the multi-objective 

problems solutions cannot be defined uniquely.  The optimal solution can be regarded more as 

a concept than as a definition. The principal concept in defining an optimal point is that of Pareto 

optimality, which is defined as follows: 

A point, *x X , is Pareto optimal if there does not exist another point, x X , such that 

( ) ( *)F x F x and ( ) < ( *)i iF Fx x for at least one function.  

In case of maximization problems, the Pareto optimal designs are illustrated in the 

objective space in Figure 2.  In this case, the objective is usually multiplied by minus one so that 

the earlier definitions do not need to be modified.  

 
Figure 2. Pareto front. 

2.1.1. Genetic algorithms 

Several modern heuristic tools exist for solving optimization problems that are difficult 

(or even impossible) to solve using classical methods. These tools include simulated annealing, 

tabu search, particle swarm, evolutionary computation, etc. These techniques are finding 

popularity within research community as design tools and problem solvers because of their 

flexibility and ability to optimize in complex highly non-linear search spaces with multiple local 

minima. GA can be viewed as a general-purpose search method. It is based loosely on Darwinian 

principles of biological evolution, reproduction and “the survival of the fittest”. GA maintains 

a set of candidate solutions called the population and repeatedly modifies them by application 

of genetic operators.  

The initial population is usually generated randomly and its size is selected based on 

experience from similar optimization problems. From the initial (and subsequent) generations, 

the next generation is generated in several steps by application of selection, reproduction and 

mutation operators.  In first step, selection operator creates temporary clones of the selected 

individuals. By preferring more fit individuals, the selection operator implements “the survival 

of the fittest” principle.  Children are obtained by combining features of randomly selected 

clones, from two parents two children are created by reproduction operator. The third step is 

applying small amount of random modifications to children i.e. mutation. In some cases it is 
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desirable to keep selected individuals so they are cloned without modifications. Over successive 

generations, the population evolves toward the optimal solution since the individuals with lower 

function values have higher fitness value and are more likely to be selected for reproduction 

(survival of the fittest). The GA is well suited to and has been widely applied to solve complex 

engineering optimization problems. GA can handle both continuous and discrete variables, 

nonlinear objective and constraint functions without requiring gradient information. Genetic 

algorithms are global optimization techniques, which means that they generally converge to the 

global solution rather than to a local solution. However, this distinction becomes unclear when 

working with multi-objective optimization where Pareto optimal solutions are obtained. The 

defining feature of GA multi-objective optimization methods is that not just local but global 

Pareto solutions are determined by the procedure [14]. The flowchart of genetic algorithm is 

illustrated in Figure 3. 

Variables upper 

and lower 

boundaries

Convergence 

criteria

Evaluate 

population

Objective 

function

 f

Population 

size

Generate initial 

population

Selection 

operator

Mutation 

operator

Crossover 

operator

Elitism operator New population

Solution(s)
NO YES

 
Figure 3. Flowchart of genetic algorithm. 

In optimization which involves simultaneous topology and shape optimization, various 

approaches exist. When the level-set method [15] is applied method, the same parameterization 

can be used while allowing the topology variations. In the cases when the level-set method is 

not applied, a different approach to topology optimization is required. One of the alternate 

approaches could be the application of variable length chromosomes [16]. For such problems, 

the number of variables for which a solution is searched does not need to be known in advance. 

This type of variable length chromosomes could contain information of multiple set of objects, 

their shapes, locations, etc. The chromosomes would grow in size adding more genes if more 

objects are added during the optimization procedure. Various similar problems (and solutions) 
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regarding variable length chromosomes exist and a good review of the methods is given in [17]. 

A genetic algorithm with variable length chromosome could be applied for multi-patch 

parameterization since the topology of the optimal solution is not known in advance. 

2.1.2. Sensitivity analysis 

Design sensitivity analysis plays an important role in several areas including numerical 

optimization.  Sensitivity information is also valuable on its own for estimation of robustness of 

the obtained solution with respect to the optimization variables. It is possible to determine how 

the value of a given response function (optimization objective), changes with respect to a given 

change in the model parameters. For small perturbations |Δx|, this information is obtained 

through a first-order Taylor series expansion. If the response function is the stress at a point of 

a structural system, aerodynamic performance measure, or some other quantity evaluated 

through a computationally expensive numerical analysis, then it can be predicted  how the 

response function value varies for small perturbations in the model parameters without 

performing a re-analysis. Much work has been performed in the field of design sensitivity 

analysis. Most notably, perhaps, is the work in structural mechanics with applications to 

structural optimization [18].  

The simplest method to obtain sensitivity information is the finite difference method. In 

the finite difference method, a simple Taylor series expansion is used to approximate to the 

derivative: 

 
2( )

 ( ) = ( ) + x ( x )
x


   


 i i

i i

f
f f o

x
x + x x  (2) 

where the derivatives are approximated with finite differences for every design variable 

independently. This method thus suffers from computational inefficiency and possible errors. 

More often used is the adjoint method whose basics are explained briefly in continuation.  The 

adjoint method originates in the theory of Lagrange multipliers in optimization [19].  As an 

example, consider the minimization of a function J from n  into 1  (single-objective), under 

the equality constraints h from n  to m .  

 Minimize ( )  such that ( ) 0J hx x  (3) 

Introducing the Lagrange multilplier   in m  and the Lagrangian L : 

 1 2

1

( , , ,..., ) ( )  ( )   


 
m

m k k

k

J hx x xL   

the optimality condition for (3) (under some qualification conditions) is the stationary 

value of the Lagragian, namely 

 ( , ) 0 * *
xL    

The adjoint method is an extension of this approach in the framework of optimal control 

theory. In this context, the variable x is the union of a state variable y and a control (shape) 

variable u, while the constraint ( ) 0h y,u is the state equation (governing equations). In such a 

case the Lagrange multiplier   is called the adjoint state. Denote by u in k a control variable.  
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The state of the system is denoted by y in n  and is defined as (for finite dimensional case) the 

solution of the following state equation: 

  ( ) =u y bA  (4) 

where b is a given right hand side in n  and A(u) is an invertible nxn matrix. Since the matrix 

depends on u, so does the solution y. The goal is to minimize, over all admissible controls u, an 

objective function J(u,y) under the constraint (4). The difficulty of the problem is that y depends 

nonlinearly on u. It is assumed here that u is a continuous variable. To numerically minimize 

the objective function J, the most efficient algorithms are those based on derivative 

informations. Therefore, a key issue is to compute the gradient of objective function 

( , ( ))J u y u  which is dependent both on the shape u and the solution y (depends nonlinearly on 

u).  The gradient ( , ( ))J u y u is computed using the adjoint method.  There are at least two ways 

for introducing an adjoint in a computer code. Either, a so-called analytic adjoint, is 

implemented, or a program for the adjoint is obtained by automatic differentiation of the code 

solving the state equation (4). The drawback of the whole adjoint approach is that it requires 

development of an adjoint solver (no general purpose adjoint solver exist for CFD). This can be 

a labor intensive task which requires good knowledge of the implemented numerical tools [19].   

Optimization with aid of the solution to the adjoint system of equations is an active area 

of research with applications in both structural optimization and computational fluid dynamics, 

particularly for aeronautical applications [20]. In fluid dynamics, the first use of adjoint 

equations for design was by Pironneau [21] for minimization of drag in stokes flow. Application 

of the adjoint approach is popular in the optimal design of structures for topology optimization 

problems. In those cases, the number of optimization variables describing the system is so large 

that it is the only viable approach. In the context of topology optimization for mechanical 

structures, the number of design variables is even larger since any cell of a “hold-all” 

computational domain is potentially a design variable: either it is full of material or empty.  

The sensitivity approach is helpful mainly in the context of gradient-based optimization 

and such optimization has its own limitations. Firstly, it is only appropriate when the design 

variables are continuous. For design variables which can take only integer values (e.g. the 

number of vane of the fan, or number of blades of wind turbine) stochastic procedures such as 

GA are usually implemented since the gradient does not exist in those cases. Secondly, if the 

objective function contains multiple minima, the gradient approach will generally converge only 

to the nearest local minimum. This is usually solved by multi-start from various locations in 

search space if one wants to find the global minimum using gradient methods. Still. if the 

objective function is known to have multiple local minima, and possibly discontinuities,  a 

stochastic search method such as GA may be more appropriate [20].  

2.2. Shape parameterization 

This doctoral thesis considers engineering SO as a combination of fully generic 3D shape 

modeling, complex engineering numerical simulation (3D CFD), and global optimization 

combined. Hence a heavy computational effort of the respective numerical workflow can be 

expected. This requires an efficient shape parameterization with as much geometric modeling 

capability with a small number of optimization variables. Surveys of parameterization methods 
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for engineering applications have been made but they are usually limited to a specific object, 

for example [22], [23] give a survey of parameterization methods on 2D airfoil.  

Wide variety of shape parameterization methods exist, as there is no single 

representation of surfaces that satisfies all of the needs for engineering SO problems. The 

simplest shape representation method is the mesh points method, which requires a large number 

of design variables but there are no restrictions on attainable geometry. Since it requires a large 

number of variables, it is not very useful for generic SO. While CAD models are often used in 

engineering, they consist of many interconnected partitioned geometric entities with 

corresponding parameters, relationships and constraints. This makes them unappropriated for 

SO and therefore other parameterization methods need to be considered. Complex 3D shape 

might in the most elementary approach be represented by a single polynomial surface, requiring 

high-degree polynomials. High degree polynomials have issues of lacking local control and they 

exhibit oscillatory behavior likely to introduce numerical difficulties. The first shape 

parameterization method that will be presented in the doctoral thesis is the Bezier surface 

(single-patch) parameterization. The Bezier single-patch surface offers a more intuitive shape 

parameterization method, explained in more detail in continuation of this section. A 

generalization of Bezier patches is B-spline surface, one of the most often used surfaces for 

shape parameterization. Furthermore, their generalizations are the non rational uniform B-

splines (NURBS) and T-splines.  All of the mentioned generalizations of the Bezier surface can 

be regarded as single-patch parameterizations. In order to achieve further generalizations, multi-

patch surfaces are required. Often used multi-patch surfaces in CAD are subdivision surfaces, 

but any single patch surface can be connected (with varying degree of smoothness) to create a 

multi-patch surface. Regarding the application in engineering optimization, still, no universal 

solutions exist. So an appropriate selection amongst a wide variety of existing methods and 

development of new parameterization methods offers a lot space for improvement.  

 Before the actual shape parameterization methods are presented, three types of shape 

representation will be discussed. Two commonly used surfaces in shape modeling are 

parametric and implicit surfaces but sometimes explicit surfaces are also appropriate. The 

explicit surface can be defined with single expression S( , )z x y . The parametric surface 

required three expressions similar to the explicit surface expression, what can be written as: 

 
2

( )

( ) ( ),

( )

x

y

z

 
 

 
 
  

S

u

u u u

u

 (5) 

where: 

- S  is a mathematical function, mapping 2 3 , i.e. from parametric space to 

model space. For two-dimensional shapes that exist in three dimensional space, but 

in general case n m ; 

- u  is a point in 2D parametric space. 

The implicit surface is defined by: 
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3I( ) 0, x x  (6) 

where: 

- I is a mathematical function, mapping 3 1 , but in general case 1 n . For 

example n=2 gives a implicit definition of curve.  Algebraic, trigonometric, 

exponential, logarithmic etc. functions can be used, as well as any function 

described in the continuation of this section (most often with RBF-s); 

- x  is a point in 3D space; 

- n is the dimensionality of space in which surface is located, for real objects n=3. 

Comparably, explicit surfaces have the least shape generality as they cannot represent 

infinite slopes (if polynomials are used) or closed and multi-valued surfaces. The advantage is 

that they are easy to construct and display. The explicit surface can easily be converted to 

implicit S( , ) 0x y z   but reverse can be achieved only for simple cases.  Implicit surfaces are 

difficult and non-intuitive to manipulate and not easy to construct (display). Curves can be 

constructed only in 2D.  The implicit surfaces compared to parametric surfaces offer some 

advantages such as: any topology can be represented by a single mathematical function; easy 

representation of intersection; easy point classification for internal (S( ) 0x ) and external 

points (S( ) 0x ). However, parametric surfaces are easy to construct and enable intuitive 

manipulation what is very important and makes parametric surfaces the most used type in 

engineering SO applications. The following sections will chiefly presume that parametric 

surfaces are used although with little modification the same mathematical functions can be used 

to define implicit surfaces.  

2.2.1.  Bezier Patches 

Bezier curves and surfaces (5) have a property which is convenient for shape 

parameterization: they pass through the end control points, the end slopes are defined by the 

respective control points next to the ends, and analogously for higher-order derivatives. These 

properties are used in this paper to impose inter-segment continuity for piecewise chained 

curves. Parametric curve can be defined by the n-th degree Bezier curve P(u) for (n+1 control 

points) as [24]: 

 ,

0

( )
( ) ( ) , 0 1

( )

n

i n i

i

x u
u B u u

y u 

 
     

 
S Q  (7) 

 

where B (Bernstein polynomial) is defined recursively (non-recursive and more efficient 

definition also exists)  as: 

 
0,0 ,

, , 1 1, 1

: ( ) 1 , ( ) 0 0 ,

( ) (1 ) ( ) ( )

i n

i n i n i n

with B u B u for i i n

B u u B u u B u  

   

    
 (8) 

Vector  iQ   is the vector of control points (Figure 4) coordinates and  0,1u  is the 

curvilinear coordinate parameter. 
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Figure 4. Bezier curve of degree 4 with 5 control points 

Bezier curves can be extended to 3D Bezier surfaces (and bodies) for describing 

parametric surfaces (and bodies). This is achieved by combining Bezier curves, whereby control 

points of a Bezier curve are replaced by Bezier curves in the orthogonal direction, 

 , , ,

0 0

( , ) ( ) ( ) , , (0,1)
n m

i n j m i j

i j

u v B u B v u v
 

   S Q  (9) 

 

where ,i jQ are the control points of the control polyhedron. Bezier curves do not possess 

the property of locality and directly link the number of control nodes with the degree of the 

respective curve.  

2.2.2. B-spline and NURBS 

B-splines are a generalization of Bezier curves (and a special case of NURBS) where 

the degree of the curve is independent of the number of control points and where the change of 

one of the control points only affects k segments. A parametric surface described by B-splines 

can be defined as: 

 

  
0 1

0, 0 1, 1 0 1

0 0 1 0

( , ) ( ) ( ) , , 0,1
n n

i d i d i i

i i

u v N u N v u v
 

   S Q  (10) 

 

with blending functions defined recursively as  
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 (11) 

 

 0 1i n d     (12) 

The equations  (10)-(12)  define the B-spline. As the individual shape functions Ni,j(t) 

are non-zaero just for the [ti, ti+j+1) interval, while amounting to zero for t<ti and t≥ti+j+1, the 

property of local control is ensured. As a result, the surface is locally formed exclusively by a 

small number of adjacent control points, Qij. The first and the last blending function in both u 
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and v directions are equal to unity at the ends while the rest of the blending functions are equal 

to zero making the surface pass coincidently through the end curves.  

The shape of the surface is controlled by modifying the control points and the knot 

vectors. The properties of local support, partition of unity and non-negativity add to the 

numerical stability of the subsequent optimization procedure. B-spline and NURBS surfaces are 

flexible enough and provide sufficient degrees of freedom (DOF) to represent the necessary 

shape for ship hull representation. These integral shape parameterizations are also scalable as 

the number of control points and the degrees of the basic polynomials can be varied. The 

NURBS curves and surfaces are a generalization of the B-spline. NURBS use the same blending 

functions as B-splines but in n+1 dimensional space where n is the actual space dimensionality 

(n=2 for plane, n=3 for 3D space). The additional coordinate adds the ability to increase and 

decrease the impact of an individual control point on the resulting shape thus enabling better 

control. Furthermore, with additional coordinate analytical shapes (conics) can be exactly 

represented.   For NURBS curve, the fourth coordinate is: 

 ,

0

( )


 
n

i i d

i

h h N u  (13) 

where hi denotes respective weights for i-th control point. The shape is projected to the 

original space by dividing with the fourth coordinate. Thus the NURBS for parametric curve: 
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(14) 

For parametric surfaces, extension of  NURBS curves to surfaces is defined by: 
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(15) 

 

2.2.3. T-Splines 

B-splines and NURBS belong to a type of tensor-product surfaces that use a rectangular 

grid of control points. If one wants to insert a control point (CP) on a B-spline surface at a 

desired location, this cannot be made without inserting a whole new row and/or column of CPs. 

To solve this problem, an adequate generalization of the B-spline surface called the T-spline 

surface was developed. To define the T-spline, it is necessary first to describe a surface whose 

CPs have no topological relationship with each other whatsoever (as opposed to regular grids). 

This surface is called a PB-spline, because it is point-based instead of grid-based. The equation 

for a parametric surface using a PB-spline is: 
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(16) 

where iQ are control points and ( , )iPB u v  are basis functions given by: 



Chapter 2: ELEMENTS OF NUMERICAL OPTIMIZATION WORKFLOW 

 

16 

 

 ,3 ,3( , ) ( ) ( )i i iPB u v N u N v  (17) 

and 
,3( )iN u and 

,3( )iN v  are the cubic B-spline basis functions associated with the knot 

vectors: 

 
 0 1 2 3 4, , , ,i i i i iu u u u u

i
u  

 0 1 2 3 4, , , ,i i i i iv v v v v
i
v  

(18) 

as illustrated in Figure 5. Thus, to specify a PB-spline, one must provide a set of knot 

vectors for each CP.  

(ui2,vi4 )

(ui2,vi3 )

(ui0,vi2 ) (ui1,vi2 ) (ui2,vi2 ) (ui3,vi2 )

(ui2,vi1 )

(ui2,vi0 )

(ui4,vi2 )

 
Figure 5. Knot lines for basis function PBi(u,v). 

Now with the definition of a single PB-spline basis function, one can proceed to define 

a T-spline surface which is composed of multiple PB-spline basis functions. A T-spline is a PB-

spline for which order has been imposed on the CP mesh. The simplest T-spline is the one where 

PB-spline basis functions are set in an ordered grid. This results in a parametric surface 

equivalent to the B-spline and this was also used as the initial T-spline grid in this paper. 

An example of a more complex control-point mesh for a T-spline is illustrated in Figure 

6 where each circle represents the center of a PBi basis function (knot vector components ui2 

and vi2). To complete the definition of each basis function, the remaining knot vector 

components for ui and vi are obtained from the nearest edges in straight-line horizontal and 

vertical directions respectively.  

After creating the initial CPs grid, additional CPs can be added (grey filled circles) in 

accordance to the T-spline rules: 

- In Figure 6 ui and vi designate parametric coordinates of the respective edge 

while ei and fi designate the knot intervals i.e. distance in parametric domain 

(e1=u2-u1, etc). The first rule is that the sum of the knot intervals on opposing 

edges must be equal. Thus, e5 + e6 = e3 and f5 + f4 = f2.  

- If a T-junction (intersection of three edges) on one edge can be connected to 

a T-junction on an opposing edge without violating the previous rule, that 

edge must be included in the T-mesh. 

- A new control point (basis function PBi) can only be inserted on a horizontal 

edge if knot vector v is equal for PBi and the four neighboring basis functions 

in the horizontal direction. In the case of inserting PB3 (Q3) this would be the 
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basis functions PB1, PB2, PB4 and PB5. This means that control point Q3 can 

be inserted since the respective knot vectors v are equal. Meanwhile, Q6 (x 

mark) cannot be added since the vectors v for PB0 and PB1 are not equal. If 

the control point is to be inserted on a vertical edge the same is valid for the 

u knot vectors. 

f2

f1

f3

f4

f5

e1 e2 e3 e4

e5 e6

u1 u2 u3 u4 u5

v2

v1

v3

v4

Q1 Q2 Q3 Q4 Q5Q0 Q6

 
Figure 6. T-mesh created from a regular B-spline mesh 

2.2.4. Multi-patch parameterizations 

Any of the mentioned single patch shape parameterization methods can be used to 

generate a multi-patch parameterization by imposing the required continuity conditions on the 

boundaries. If the single patch shapes are not adjacent in parametric domain, first the intersection 

has to be calculated. When using T-splines multi-patch parameterization may even not be 

necessary i.e. are only necessary if topological changes are required.  

Application of multi-patch parameterization can be illustrated on chained Bezier 

surfaces. In the paper [24], chained piecewise Bezier curves and surfaces are developed to 

provide for locality and low-degree curve. Bezier patches are piecewise by definition, with each 

defined only within a partial segment of the entire domain. However, while reducing the 

problems of locality and possible oscillations, this raises an additional request of imposing and 

ensuring adequate continuity between the piecewise segments. In the framework of design 

optimization, chaining of piecewise curves should also not increase the parameterization 

complexity, as increasing the number of control points would drastically increase the numerical 

effort due to higher dimensionality of the search space. The proposed procedure in [24] is based 

on subdividing the domain into patches and chaining piecewise low-degree Bezier curves and 

surfaces into complex shapes. The procedure starts by subdividing the problem domain into 

patches, for each of an individual approximation curve or surface with corresponding control 

points is assigned. In segments (between adjacent original control points) where chained 

surfaces are to be joined with C1 continuity, additional control points are interpolated as 

illustrated in Figure 7 using the local original points. The number of optimum design variables 

(original control points) is thereby not increased since the generated points depend on the 

original ones. 
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Figure 7. Chaining 3rd degree Bezier surfaces with C1 continuity [24]. 

2.3. Computational fluid dynamics 

Since most engineering optimization cases used in this thesis contain a computational 

fluid dynamics (CFD) simulation, this section presents the properties of CFD that should be 

considered in shape optimization procedure. CFD is undergoing significant expansion regarding 

its engineering applications, number of researchers active in the field, and also the number of 

courses offered at universities. For solving fluid flow problems, numerous software packages 

exist but still the market is not quite as large as the one for structural mechanics codes. While 

for structural problems, the finite element method is well established, CFD problems are, in 

general, more difficult to solve. However, CFD codes are slowly being accepted as design tools 

by the industry [25]. Even if accurate CFD modeling is possible, the issue when using CFD as 

part of an optimization workflow is the respective computational time required for simulation.  

 The simplest optimization problem would be single variable, single objective 

optimization. These kind of optimization problems are usually easy to solve. Still, several 

problems can appear. Even in an ideal CFD simulation multiple minima are possible, so when 

starting from two different initial points, two different local minima might be found as illustrated 

Figure 8.  Furthermore, a realistic CFD simulation will not yield in ideally smooth objective 

function curve, but will have some “noise” added to the ideally smooth function.  This makes 

the optimization even more difficult since even when starting from near the global minimum, 

the optimization procedure will soon end trapped in a local noise-induced optimum (illustrated 

in Figure 8 by triangles). This illustrates that even in the simplest single objective case, the 

optimization is not as trivial as it might seem. The gradient methods that are by far most efficient 

in optimization of smooth functions are in this case not directly applicable. Thus, when 

incorporating engineering simulations in an optimization workflow, all components of the 

workflow (optimization method, shape parameterization and engineering simulation - CFD) 

need to be considered. 
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Figure 8. Schematic representation of a simple optimization problem involving a single 

parameter and a single objective. The objective function shows two minima. The exact 

objective function is represented by the solid line while the inaccurate and more realistic case 

of CFD-based evaluation of the objective function is shown as a dashed line. 

Real optimization problems found in engineering as well as in fundamental research will 

generally involve several (often too many) shape variables and several objectives. It is important 

to know the practical limits of optimization based on CFD. The most limiting factor is the 

computing time requirement for a single evaluation. Admittedly, each CFD evaluation with 

shape modification will usually lead to slightly different numerical costs but the variations are 

normally negligible relative to the overall computational cost. This means that the computational 

cost depends mostly on the type of simulation that is conducted, for example, on a modern PC 

the following CFD simulations could be conducted: 

- one flow simulation with included thermal analysis for a photovoltaic panel 

takes typically about 10 hours of computing time and 4 GB of computer 

memory [26]; 

- one simplified simulation of the turbulent channel flows requires less than 5 

seconds of computing time and 10 Megabytes (MB) of computer memory; 

- one transient 3D simulation of Darrieus wind turbine requires 16 Gigabytes 

(GB) of computer memory and about 30 days of computing time; 

By looking at the computing requirements for these few examples, it is evident that the 

computational time can vary by 5 orders of magnitude and the computer memory by 3 orders of 

magnitude. This is typical of what will be found in practice: simple CFD problems can be solved 

within seconds on a standard PC; high-end CFD problems can require weeks of computing times 

and Terabytes (1 TB=1000 GB) of memory on supercomputers. In such cases, the limits of 

optimization when using CFD are clear in principle: CFD based optimization is possible for 

simple CFD problems and almost impossible for high-end CFD configurations. To somewhat 

quantify the possibilities, considering again the earlier examples: 

- only 100 evaluations corresponding have been conducted in [26] and this 

already at an extremely high computational cost; 
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- on the other hand, more than 5000 evaluations have been easily carried out 

for the simplified turbulent channel flow in [13]; 

- for the transient 3D simulation of Darrieus wind turbine lasting 30 days, no 

practical optimization could be conducted. 

As a rule of thumb for engineering practice, it therefore seems appropriate to state: CFD 

based optimization is possible when the duration of a single CFD computation does not exceed 

a few hours at most [13]. Practical limits of CFD optimization are illustrated in Table 1  for a 

modern PC. 

Table 1. Practical limits of CFD optimization for a modern PC. 

Evaluation cost Optimization cost for  

≤2 parameters 

Optimization cost for 

 ≥3 parameters 

low cost  

(1 min CPU, 100 MB 

memory) 

very easy easy up to 20 parameters 

medium cost  

(1h CPU, 1000 MB memory) 

easy still possible up to 20 

parameters by parallelization 

high cost  

(20h CPU, 10 GB memory) 

still possible almost imposible 

In order to achieve improvements in optimization speed, the sensitivity with respect to 

the objective function can be calculated by adjoint methods [20], [21]. While this is easily done 

(and well documented in the literature), e.g. for the Euler equations, the task will become much 

more difficult when considering complex, multiphysics problems. Furthermore, the adjoint 

approach requires a full knowledge of the intermediate approximations on a way to the full 

solution of the system of equations solved by CFD. In simple words, this means that the adjoint 

approach, while greatly reducing the number of evaluations (and computational time), will also 

lead to a huge increase of the requested computer memory which will again become a major 

problem for complex, three-dimensional flows involving many unknowns at each discretization 

point [13]. The adjoint approach (by default) used gradient optimization methods and is 

accompanied with all of the disadvantages of gradient methods such as finding only the nearest 

local minimum. For a generic optimization task with ambition to find a global solution this 

approach can be helpful but it cannot be used exclusively. This doctoral thesis aims mostly at 

investigating efficient shape parameterization techniques that could be used in any engineering 

simulation (structural, multiphysics…) involving SO. But CFD is used since it is widely applied 

in combination with SO, and it illustrates many problems occurring when using engineering 

simulations.  The following sections will briefly layout the basics of CFD. 

2.3.1. Fluid flow equations 

Fluids are substances whose molecular structure offers no resistance to external shear 

forces: even the smallest force causes deformation of a fluid particle. For most engineering 

applications, a fluid is regarded as a continuous substance (continuum).  Flow equations can be 

given by multiple conservation law. For mass, which cannot be created or destroyed, the 

conservation equation can be written (for a control mass, CM): 
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where m stands for mass and t for time, 
D

Dt
 is the material derivative (later D will be 

used for rate of strain tensor). As opposed to mass the amount of change momentum is not equal 

to zero. Newton's second law of motion states that: 
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where v is the velocity, and f is the forces acting on the control mass. The left hand side 

of equations (19) and (20)  can be generalized for conservation of an intensive property . This 

generalization can be written as an integral equation: 
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where CM  stands for volume occupied by the control mass,   is density , CV  is the 

control volume (CV) volume, SCV is the surface enclosing CV, n is the unit vector orthogonal 

to SCV and directed outwards, v is the fluid velocity and bv  is the velocity with which the CV 

surface is moving. For mass conservation  = 1, for momentum conservation   =v.  For 

common case of a CV fixed in space, bv = 0 and the first derivative on the right-hand side 

becomes a local (partial) derivative. This equation states that the change of the amount of 

property in the control mass CM  is the rate of change of the property within the control volume 

plus the flux of it through the CV boundary caused by the fluid motion relative to CV boundary. 

The flux is called the convective flux of   through the CV boundary.  The integral form of 

the mass conservation (continuity) equation in case of fixed control volume follows directly 

from (21) by setting  = 1: 

 d d 0  
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 again for a fixed control volume, the momentum conservation equation is obtained by 

setting  = v  and combining with (20). The resulting equation is: 

 d d  



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
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S

S
t

v vv n f  (23) 

 

Continuity equations can also be written in coordinate-free differential form by 

application of Gauss divergence theorem to the second term and reducing the volume to 

infinitesimally small. To express the right-hand side in terms of intensive properties, surface 

forces and body forces have to be considered. 

The surface forces are from the molecular point of view, the microscopic momentum 

fluxes across a surface, macroscopically represented by pressure and stresses.  If these fluxes 
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cannot be expressed by density and velocity, the system of equations is not closed since there 

would be fewer equations than dependent variables. By making assumptions that the fluid is 

Newtonian (it is in most practical engineering applications), a closed system of equations can 

be assured.  For Newtonian fluids, the stress tensor T, which is the molecular rate of transport 

of momentum, can be written (using index notation): 
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where,  is the dynamic viscosity, I is the unit tensor, p is the static pressure and D is 

the rate of strain (deformation) tensor:  
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The body forces per unit mass can be represented by force vector b, so the integral form of the 

momentum conservation equation now becomes: 

 d d T d d    
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
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The equation (26) with (24) and (25) included is the most general form of momentum 

conservation equation for Newtonian fluids. All fluid properties (density,…) can vary both in 

space and in time. However in many applications the fluid density is practically constant. 

Constant density may be assumed for most liquid flows, but also for gases in case of low Mach 

number (<0.3).  Such flows are called to be incompressible. However this simplification is 

generally not of a great value, as the equations are similar to the original ones regarding 

difficulty of obtaining a solution. However, assuming constant density and viscosity does help 

in numerical solution and it should be implemented if the problem allows it. In addition to 

simplification to incompressible flow, various other simplifications are used depending on the 

conducted simulation. It is important to know what simplifications can reasonably be used to 

lower the computational time but still keep sufficient simulation physics so that the correct 

optimal solution can be obtained in a reasonable computational time. 

2.3.2. RANS equations 

The continuity and momentum equations in Reynolds averaged differential form can be 

summarized, in tensor notation and Cartesian coordinates as: 
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where  , p  and iu  are the mean flow density, pressure and the Cartesian velocity 

components respectively: ix  is the Cartesian coordinate;   is the molecular viscosity; The 

specific body force if  includes external body forces such as gravity. Turbulent viscosity t  

and turbulence kinetic energy k are obtained from a selected turbulence model. The continuity 

and momentum equations in some cases have to be solved together with energy conservation 

equation: 
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 (30) 

 

Where h  is enthalpy; k  thermal conductivity; tk  is the thermal conductivity due to 

turbulence and is defined by turbulence model; T  is the temperature ; hS  is volumetric heat 

source; and e  (specific total internal energy) can defined by: 
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2.3.3. Computational domain discretization 

Most often in CFD, the finite volume method is implemented to discretize the 

computational domain.  It uses the integral form of the conservation equation as the starting 

point: 
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The usual approach is to define control volumes (CVs) by a suitable grid and assign the 

computational node to the CV center, see Figure 9. Nodes on which boundary conditions are 

applied are shown as full circles in this figure. The derivatives that appear in conservation 

equations are approximated by finite differences. Domain discretization methods are very 

important since computational time can be reduced by an order of magnitude while keeping 

good computational physics if appropriate methods are used. Also, mesh generation can take a 

considerable amount of overall time of a shape generated by the optimizer. 
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Figure 9. Finite volume schematic representing nodes and faces. 

 The result of the discretization process is a system of algebraic equations, which are 

linear or non-linear according to the nature of the partial differential equations from which they 

are derived. In the non-linear case, the discretized equations must be solved by an iterative 

technique that involves guessing a solution, linearizing the equations at the current solution, and 

improving the solution; the process is repeated until a converged result is obtained. So, whether 

the equations are linear or not, efficient methods for solving the linear systems of algebraic 

equations are needed. The selection of the method is an important step, since orders of 

magnitude in computational time can be lost if an inappropriate method is chosen. Various 

guidelines (for example ANSYS Fluent help [27]) exist but the appropriate method is problem-

dependent. 

After the solution is obtained, the last step is post-processing of the flow field. This 

usually includes integrating surface forces (or forces*distance to obtain torque) on boundaries 

that represent the object of optimization. This value is finally sent to the optimizer and the whole 

process is repeated till the convergence criteria are met. 

2.4. Test examples of engineering optimization  

The overall numerical optimization problem with all included components is usually 

integrated in an optimization workflow. The workflow represents the final product of integrating 

all the required components: engineering simulations, parameterization methods and 

optimization algorithms. Several examples of engineering optimization were conducted as a part 

of this doctoral thesis: centrifugal fan, ship hull, vertical axis wind turbine and horizontal axis 

wind turbine. This section briefly presents the developed methodology and the results for each 

test case while the respective detailed description can be found in papers [1]–[6].  

2.4.1. Centrifugal roof fan 

The part of the centrifugal fan considered for optimization is the vane shape. In previous 

research [28], most common shape variables were geometric parameters such as the leading 

edge angle, the trailing edge angle and the vane length. In the simple optimization case, the 

shape of the vane is evaluated by a single CFD simulation for a single flow regime. However, 

multi-regime aspects should be considered in order to obtain a robust solution. In the papers [1], 

[2], procedures for multi-regime optimization were developed for centrifugal fan vanes. The 
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developed workflow is capable of fully generic 2D and 3D shape optimization of a centrifugal 

roof fan vane by manipulating the control points of parametric surfaces as illustrated in Figure 

10. This parameterization method is an upgrade version of the one developed in [1] for 2D 

optimization. 

 
Figure 10. Shape parameterization using generic B-spline surface, used for both vane 

and domain parameterization. 

Additional variables used were rotation speed and the discrete number of vanes.  The 

excellence formulation was based on design flow efficiency, multi-regime operational 

conditions and noise criteria for various cases including multi-objective optimization. Multiple 

cases of optimization demonstrate the ability of customized and individualized fan design for 

the specific working environment according to the selected excellence criteria. Noise analysis 

was also considered in an multi-objective optimization workflow as an additional decision 

making tool. The workflow for the multi-regime operational conditions is illustrated in Figure 

11. In the figure, the horizontal direction represents the process flow while the vertical direction 

represents simultaneous data flow. Corresponding data mining and coordination of the process 

flow were implemented using commercial software modeFRONTIER [29]. The computational 

workflow needed to implement the procedure encapsulates geometric modeling (computer-

aided design, CAD), simulation software (computational fluid dynamics, CFD) and calculators 

(statistical mean calculation) coupled with the evolutionary numerical optimization. The 

numerical coupling needs to include both the process executions and their mutual 

synchronization as well as data flows between the individual applications. The workflow is in 

this example controlled by MOGA-II, a version of multi-objective genetic algorithm. Detailed 

description of input and output quantities is available in [2]. Here the workflow is illustrated 

just to present that it is indeed possible to construct a working numerical workflow that 

integrates all the necessary applications and procedures. The results of the optimization process 

have shown that the B-spline shape is applicable to the centrifugal fan vanes. It was shown that 
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both global and local optimization method should be used to improve the convergence of the 

optimization procedure. 

 
Figure 11. Example of optimization workflow. 

2.4.2. Ship hull 

Ship hull shape optimization is a research topic with a large number of research papers 

[30]–[38]. This research often includes multi-disciplinary optimization [31], [33] which requires 

both fluid and structural mechanics. Paper [39] gives a review of ship hull parameterization 

methods. Regarding the application of B-spline and NURBS surfaces, it was concluded that 

their application is limited by the demand for a regular control-points grid and fixed topology. 

T-spline and sub-division surfaces are considered as more efficient methods but they require an 

additional procedure for control-point insertion. This might pose a problem during the 

optimization in which the location where the control-point insertion is required, is not known in 

advance. This opens a space for development of optimization algorithms for adaptive insertion 

and removal of the control-points. However, a better stability of the optimization procedure 

would be obtained by a fixed control-points grid. 

Thus, a parameterization method would ideally be capable of describing complex shapes 

with a fixed number of control-points. As a part of this doctoral thesis, a method for efficient 

global optimization using a single-patch B-spline surface was developed in [6]. This method 

can describe different complex shapes which are even topologically different using a fixed set 

of control-points. The parameterization method is illustrated in Figure 12. The parameterization 

is achieved by using a B-spline surface and a symmetry plane which is used to trim a part of the 

surface for which y<0. This means that not all of the control-point degrees of freedom are 

required which can potentially reduce the number of shape variables in comparison to full 3D 

shape parameterization. 
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Figure 12. Developed shape parameterization method. 

This parameterization method was used as a part of multi-disciplinary shape 

optimization workflow. The workflow included a geometry modeler, structural requirements 

calculator and a CFD simulator. Single case of shape optimization procedure was conducted. 

The result was a Pareto set of solutions which are a compromise between structural weight and 

hydrodynamic drag. It was shown that the proposed parameterization method can be used in 

complex multi-disciplinary shape optimization. 

2.4.3. Wind turbine 

Wind turbines can be divided into two categories: horizontal-axis wind turbines 

(HAWT) and vertical-axis wind turbines (VAWT). HAWTs typically have an airfoil-based 

blade shape which can be constructed by scaling and rotation of a selected airfoil shape. 

Meanwhile, VAWTs appear in a diverse array of shapes. A large amount of papers regarding 

wind turbine optimization exist and different parameterization methods have been used.  

In the earliest papers [40]  regarding VAWT optimization (and still in newer papers [41], 

[42]) the wind turbine solidity (ratio of surface taken by the blade and the total swept surface 

area) was used as an optimization variable. However, this parameter by itself does not allow for 

sufficient generality required for optimization. Better shape control is obtained by using a 

parameterized air-foil. The most commonly  used [43], [44] airfoils are the NACA 4-digit series 

where the optimization variables are the maximum width, maximum camber and location of the 

maxima. In [45], [46] the shape is described by using parametric curves (Bezier and NURBS) 

where the variables are the respective control-points. These 2D shape parameterizations require 

16 to 19 optimization variables. If this is combined with 3D CFD as a part of a numerical 

optimization workflow, 19 is already a large number of variables and only 2D shape is the shape 

that can be obtained. Also, researchers have shown that height-wise angle [47] and chord [48] 

distribution also have influence on the wind turbine performance.  For HAWT optimization, 

shape parameterization usually involves constant airfoil with chord and twist angle distribution 

as variables, but span-wise translation of airfoil sections can also aid improvements [49]. 

Generic B-spline and cubic splines parameterizations have also been developed for HAWT and 

similar shape optimization problems [50]–[52]. Nevertheless, the VAWT optimization task 

requires a specialized parameterization method which permits a very wide range of different 



Chapter 2: ELEMENTS OF NUMERICAL OPTIMIZATION WORKFLOW 

 

28 

 

shapes with small yet sufficient number of shape variables. An overview of shape 

parameterization methods is given in Table 2. 

Table 2. Shape parameterization in some VAWT optimization studies 

Considered shape 

variables 

Number of 

shape variables 

Performance 

prediction method 

 

Reference 

Rotor solidity 1 MST,CFD [40]–[42] 

NACA 4-series airfoils 4 CFD [43], [44] 

2D Bezier parametric curve 

control points 

16 2D unsteady panel 

method [53] 

[45] 

2D NURBS control points 19 CFD [46] 

Helical angle, chord length, 

rotor diameter, pitch angle, 

blade thickness ratio 

5 CFD [47] 

The first wind turbine optimization tests conducted as a part of this doctoral thesis were 

HAWT optimization tests. First, the numerical CFD model was tested based on NREL 

experiments [54] for 10 meter diameter wind turbine with S806 airfoil. The airfoil performance 

was also compared with experimental data from [55], [56]. After it was confirmed that the CFD 

can predict the wind turbine performance with a satisfactory accuracy, shape parameterization 

methods were developed on the basis of the NREL wind turbine. The first shape 

parameterization was airfoil-based. A fixed airfoil with variable rotation, translation and scaling  

was used along the blade. The airfoil itself was described by a B-spline curve so it can be fixed 

or variable as illustrated in Figure 13a. The second proposed parameterization is based on a 

generic B-spline surface with 2 degrees of freedom per control points as illustrated in Figure 

13b for the upper half of the blade. 

  
                                                      a)                                                                            b) 

Figure 13. Wind turbine blade parameterization methods: a) Airfoil-based wind 

turbine blade shape parameterization: T – airfoil translation, L – airfoil scaling and  – 

airfoil rotation and b) Generic wind turbine blade shape parameterization using B-spline 

surface. 

The next step is integration of the geometry modeler with CFD simulator in an 

optimization workflow. The initially selected objective function was maximum power 
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coefficient at a selected wind speed. Finally, the annual energy production was used, which 

means that the wind speed was described by a statistical distribution. So, several CFD 

simulations were required in order to calculate the annual energy production. For this case, in 

addition to the shape variables, the blade rotation (“pitch”) as a function of wind speed was also 

used.  

For the VAWT optimization case, the problem is even more complex. In addition to 

wind speed described by a statistical distribution, each VAWT design has to be evaluated by a 

transient CFD simulation for several rotations and the VAWT characteristics are obtained by 

averaging. The following pseudocode illustrates the required number of CFD simulations in the 

optimization procedure: 
 

while (convergence criteria) 

     shape = generate new shape 

    for i = 1 do number of operating regimes 

        for j = 1 do 360 

            aerodynamic power = fCFD(shape,i,j) 

        end 

    end 

end 

  

In addition to numerical complexity, VAWTs can appear in various mutually very 

different shapes such as the Savonius [57] and Darrieus [58] types.  This means that the usage 

of the same shape parameterization as for HWATs is not appropriate. The proposed 

parameterization method is an airfoil-based parameterization using a B-spline surface as shown 

in Figure 14. A single airfoil is described by a set of B-spline control points in 2D as shown in 

Figure 14a, but if all 2D degrees of freedom are used there would be 24 variables related only 

to a single airfoil. The shape variables have to be chosen as low as possible but still the 

parameterization has to be capable of describing both the Savonius and the Darrieus shapes. The 

number of variables was reduced to only 8 by relating all of the control points to supplementary 

variables as shown in Figure 14a. Only the control point cp1 was allowed for independent 2D 

freedom of shape. This 2D parameterization defines a single “row” of B-spline surface control 

points, designated as profile_i in Figure 14b. For full blade description, the base control point 

row was translated and rotated along the height direction.  The detailed description of the method 

and the obtained results are shown in [4]. 

 
Figure 14. Vertical-axis wind turbine shape parameterization. 
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3. PARAMETRIC SHAPE FITTING 

The section 2.2 described how to generate surfaces from a known control point (CP) net.  

The inverse problem is also of interest; i.e., given a known set of data on a surface, determine 

the control net that best approximates that data. This is known as shape fitting.  The parametric 

shape fitting is important in different research areas and there is abundant literature dealing with 

it [59]. This thesis deals mostly with surface fitting which can be divided into techniques that 

do not [60], [61]  and ones that do [62], [63] require mapping of 3D shape to planar domain. It 

was shown that the second group is more appropriate for the purposes of this doctoral thesis so 

they will be the topic of this section.  

By using shape fitting of parametric surfaces to the already existing solutions of the 

optimization problem at hand, a preliminary result of a parameterization method efficiency can 

be obtained. This makes a valuable tool since numerically expensive full optimization is not 

required in order to test a parameterization method. Also, adaptive parameterization method 

(changing the parameterization methods during the optimization procedure) could be developed 

with the aid of parametric shape fitting.  

The problem of fitting is shown for illustration in Figure 15. The problem is determining 

a control polygon that generates a B-spline curve to approximate a set of known data points. 

 
Figure 15. Determining control points polygon for a known data set. 

If objective is that the curve passes through all data points, the following equations must 

be satisfied: 

 
0

( )   where 1,...,  and 1,...,


   
n

i j i j

i

B u Q P i n j m  (33) 

 

where ( )iB u  are the basis functions (Bezier, B-spline,NURBS,…) jP are the data points, 

iQ are the control points. The system of equations is more compactly written in matrix form as: 

     B Q P  (34) 

If n=m, the problem is interpolation and simple inversion      
1

Q B P  can be used to 

obtain the control points.  For n<m, the following can be conducted by using the pseudoinverse: 
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In general case, the problem is solved by minimization of the following least square error 

function: 
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E B uQ Q - P  (36) 

For surfaces, the least square error function can be written as: 
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The continuation of this section will present fitting methods that were used in this 

doctoral thesis. 

3.1. Enhanced fitting method 

This section presents the enhanced fitting method which was used in [6] as a part of the 

doctoral thesis. The enhanced fitting method uses a non-linear fitting procedure that allows for 

B-spline control points crowding and aggregation at locations of certain geometric features thus 

enabling good shape fitting while keeping low numerical complexity and high stability [64][65]. 

The enhanced fitting method is crucial since the linear fitting cannot replicate the mentioned 

control point aggregation that would accrue in the case of real optimization. The fitting method 

is composed of a projection of a point cloud P to a rectangular domain and obtaining an initial 

solution by linear fitting of a B-spline to the projected point cloud. After the linear fitting, a 

gradient method and genetic algorithm are used for improving the solution. As opposed to 

classical B-spline fitting, the parametric coordinates (u and v) of the (point cloud) individual 

points are additional fitting variables that allow spline control points movement towards 

locations of certain geometric features such as the sharp edges.  In that case, the error function 

subjected to minimization is: 
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where P is point cloud matrix representing the hull shape; U and V are matrices of 

parametric values: 
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3.1.1. Projection to rectangular domain 

For the initial solution, the U and V values are fixed and only the control points 

coordinates are obtained. Before obtaining the initial solution, an ordered structured point cloud 

is required such that it can be written in matrix form. To obtain the required ordered distribution 

for U and V in the case of the full 3D spline fitting, a projection of shape from physical space 

to parametric space is required. The most-simple method is to use parallel cross-sections which 

can individually be projected to the respective location in the parametric domain. However, this 

is not appropriate for complex shapes such as for example the DTMB hull [66] illustrated in 

Figure 16.   

 
Figure 16. DTMB half of ship hull. 

Figure 17 illustrates the necessity of projection to rectangular domain. The line j-j which 

is the straight deck line with constant height can easily be projected to u-v domain by projection 

in y-axis direction. Similarly, the line k-k also appears that it can be easily be projected but in a 

general case, line k-k is a 3D curve. The line designated l-l is obviously a 3D curve and it cannot 

be projected to the parameter space in a simple matter as the line j-j. Various methods of 

projection of 3D surfaces to rectangular domain exist. Another possibility is applying the spring 

analogy to the meshed point cloud in order to achieve a regular square shape in parametric u 

and v coordinates [67] and applying linear interpolation to generate the required ordered 

distribution of points. Here, a procedure developed in [64] is implemented to achieve the 

required matrix topology since it provides for much better initial guess.   

 
Figure 17. Lines j-j, k-k and l-l illustrated in: a) physical space b) parametric space. 
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The procedure is illustrated on a half of the DTMB hull, scaled to the unit cube. The 

starting point is a triangulated surface with an unordered point cloud 
U
p  with physical 

coordinates, scaled to the unit cube as illustrated in Figure 18. The unordered points 
U
p can be 

divided into two sets of points, the first set being the boundary points 
B
p  and the second set of 

points the remaining internal points 
I
p .  

 
Figure 18. Point cloud: internal points, boundary points and corner points. 

The first step is selecting four points on the geometry boundary 
B
p , illustrated as small 

circles A,B,C and D in Figure 18.These points will be pre-set in the corners of the square u-v 

parametric domain as illustrated in Figure 19. The second step is moving the rest of the 
B
p  in-

between the pre-set corner points, thus making a subset of projected boundary points 
B

p'  as 

illustrated with shaded line in Figure 19. Spacing of the 
B

p'  points in the u-v domain between 

the respective corner points is linearly correlated to the physical distances between the points. 

 
Figure 19. Point cloud projected to rectangular parametric domain.  
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Before the projection of the remaining (internal) points, designated 
I

p' ,(Figure 19) 

additional values and functions have to be defined as followed. First a pre-projection of the point 

cloud has to be conducted, for the case of a ship hull a simple y-axis projection is sufficient as 

illustrated in Figure 20.  Now the parameter of angle  can be defined as the angle between the 

vector connecting the boundary point 
B

ip  with the internal point 
I

ip  and u0 axis in the pre-

projection domain. Now the angle values ,i jp  and distance values ,i jdp  for each combination 

of boundary-internal point has to be calculated, pseudo-code as follows: 
   

for i=1:nI 

 for j=1:nB 

  ,i jp = calculate_angle(

B

jp ,

I

ip ) 

  ,i jdp = calculate_distance (

B

jp ,

I

ip ) 

 end 

end 

   

where nI is the number of internal points and nB is the number of boundary points. The 

distances ,i jdp  are calculated on the original triangulated surface by Dijkstra's method.  

 

Figure 20. Definition of angle  and angle-related distance. 

The function set ( )B

i p'  representing a function of projected boundary coordinates with 

respect to angle can now be created from ,i jp  and the coordinates of points 
B

ip'  by 

interpolation. The function ( )B

i p'  is different for each internal point since the boundary points 

are at different angular positions with respect to the internal point as illustrated in Figure 19. 

From ,i jp  and ,i jdp , function ( )id   for each internal point can also be created by 
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interpolation. f two or more boundary points have the same angle value , points with larger 

distance d are ignored.  

The projection of each internal point 
I

ip'  is finally obtained by: 
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where fP is the projection operator, selected as: 
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Other projection operators can be used, but the above one has shown the best results. 

The value of Pf  varies from 0 to 1 depending on the ratio of closest point an angle   and angle 

  (Figure 20). If the projection is calculated only by using two angles   and   , the 

projected point would be located on the line between ( )B

i p'  and ( )B

i  p' . The point would 

divide the line in ratio ( ) / ( )  i id d . When integrated over all angles  , a smooth 

projection can be obtained. The denominator in (41)  represents sort of normalization, an 

equivalent is the number of points in the case when the projection is achieved with finite number 

of angles   with spacing  . After projection of unstructured points 
U
p  into the square 

parametric domain, the required matrix topology of point cloud is obtained by simple 

interpolation. The fitting procedure is continued according to (38).  

3.2. Adaptive fitting 

This section presents an iterative adaptive fitting procedure that was developed as a part 

of this doctoral thesis in paper [8]. The iterative method assumes that an initial solution exists 

obtained by fitting a parametric surface S(u,v) to a functionally determined point-cloud F(u,v). 

The point-cloud F(u,v) is obtained by using a spring-based projection method [67], [68]. The 

initial control points are later redistributed towards the desired areas by application of a scalar 

field called the relaxation field. The adaptive fitting iteration step is composed of evaluating the 

relaxation field based on the previous iteration, re-mapping and re-fitting. 

3.2.1. Relaxation surface 

First present the construction of the relaxation scalar field that will be used for 

subsequent re-parameterization. For the case of shape fitting an error metric can be used for the 

relaxation field. This error is calculated by using the results from the previous iteration. The 

error is defined as the distance between the point-cloud surface F(u,v) and the selected 

parametric surface S(u,v): 

  ( , ) ( , )- ( , )E u v u v u v S F  (42) 
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For the construction of the relaxation field used for, both magnitudes, the error and its 

gradient are used: 

 ( , ) ( , ) ( , )abs sign

e norm g normu v c E u v c E u v       (43) 

where the exponent abs denotes that the absolute value was used, the exponent sign 

implies that the error surface is signed (can be both positive and negative depending on the 

normal vector on the surface) and norm is the subscript denoting normalization with respect to 

the corresponding maximum value. The gradient does not necessarily exist so it is calculated 

numerically by the central difference formula. The normalized error values are multiplied by a 

factor ce while the normalized gradient magnitudes are multiplied by a factor cg.   

The error as defined in (42) does not represent the true distance between the parametric 

surface and the triangulated point-cloud mesh. To obtain the true distance (minimum distance 

between the point-cloud and the parametric surface), the squared error is minimized as a 

function of parametric coordinates for the parametric (spline) surface while keeping the point-

cloud points constant: 
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j

E u v u v


 S Fv vu v  (44) 

where ( , )v vu v  are vectors of parametric coordinates on the parametric surface which are 

to be found. This means that for each selected (and fixed) point ( , )j ju vF  on the point-cloud 

surface, the nearest point on the parametric surface 
, ,( , )v j v ju vS  is to be found. This optimization 

problem was solved by a low memory BFGS [69], [70], a quasi-Newton method which is 

necessary since there is a large number (nvar=2∙m and m is typically 200x200) of optimization 

variables ( , )v vu v . This method requires calculation of the derivative for each variable. The 

derivative of the squared error for a point 
, ,( , )v j v ju vS with respect to the parametric coordinate 

u (and similarly to v) is calculated by: 
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where Sd  is d-th coordinate of parametric surface S(u,v) and Fd is the value of d-th 

coordinate of the point-cloud surface F(u,v). The term Sd
d

du
 is the derivative of the surface 

with respect to the parametric coordinates. For the case of the B-spline surface it is simply 

obtained by a lower order B-spline surface. This makes the minimization of the error (i.e. finding 

the true distance error) computationally feasible although still relatively time-consuming.  

3.2.2. Adaptive re-mapping 

Now the relaxation surface (u,v) can be applied. The relaxation is applied to the spring 

mesh [67], [68] corresponding to point-cloud F(u,v).  Individual spring stiffness was calculated 

as reversely proportional to the spring length. The relaxation surface is then used for increasing 

the lengths of the springs i.e. reducing the edge stiffness by:  
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 0 0 ( , )u vl l l s s    (46) 

where su and sv are the parametric coordinates of the spring center in the previous step. 

After the stiffnesses are relaxed for all springs, the new point-cloud projection is calculated by 

solving the spring system equilibrium.   

3.2.3. Flowchart of the procedure 

The developed overall procedure is illustrated by the flowchart in Figure 21. The 

procedure uses a triangulated point-cloud geometry as input and this is used to create an initial 

point-cloud mapping which is used for creating the initial functionally determined point-cloud 

F(u,v). Based on this initial mapping, the initial parametric surface S(u,v) fitting is conducted. 

Now the relaxation surface can be calculated based on a selected error metric between the point-

cloud F(u,v) and the parametric surface S(u,v). This error is used as input for the spring mesh 

relaxation in the adaptive re-mapping step which results in a new functionally determined point-

cloud F(u,v). The final step is fitting the parametric surface to the new point-cloud surface 

F(u,v). The last three steps of the procedure (calculation of the relaxation surface, adaptive re-

mapping and re-fitting) can be conducted only once or repeated multiple times until the chosen 

stopping criteria are met. After each iteration step, the parametric surface and the point-cloud 

mapping are modified which results in a different relaxation surface which will again lead to a 

modified parametric surface. The stopping criterion used here was simply a predefined fixed 

number of iterations. If the number of iterations is not fixed, the procedure converges to a fixed 

solution in some cases while in some cases the procedure gradually diverges. This convergence 

will be investigated further in future work. 

Initial point cloud 

mapping
Initial fitting of parametric 

surface to point cloud

Callculate relaxation 

surface

Adaptive point cloud         

re-mapping

Fitting of parametric 

surface to new functionally 

determined point cloud, Stopping criteria

Point cloud
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point cloud,

F(u,v)

End
Yes
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Process flow
Data flow
Process flow
Data flow
Process flow
Data flow

 
Figure 21. Flow chart of the adaptive fitting parametric surface. 

3.3.  Engineering application of parametric shape fitting 

This section gives a summary of several considered engineering applications of 

parametric shape fitting methods.  
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3.3.1. Parameterization testing by enhanced shape fitting  

Parametric shape fitting is considered important for testing of parameterizations on 

existing shapes (point-cloud) as this way a parameterization can be tested geometrically without 

including computationally expensive numerical simulation. This kind of testing was conducted 

(in addition to the shape optimization) in the paper [6] where several different shape 

parameterizations were tested on several different ship hull shapes.  

3.3.2. Boat hull adaptive fitting using B-spline and T-spline 

This section compares the performance of B-spline and T-spline surfaces for 

parameterization of a boat hull using the adaptive fitting procedure. The results of the adaptive 

fitting of the B-spline with a 15x20 CPs grid and a 15x9 CPs grid to boat hull surface are 

illustrated in Figure 22. The effect of adaptive fitting can be observed – the CPs are concentrated 

at the geometric features. In this case this means that the CPs are concentrated near the sharp 

edges while they move away from the flat areas such as the flat bottom. When using the 15x9 

CPs grid, the overall geometry is represented fairly but still the sharp edges are not clearly 

visible. With an increase to the 15x20 CPs grid the sharp edges become visible. Still, the spike 

on the bow where multiple sharp edges come together is not clearly noticeable.   

       
                                          a)                                                               b) 

Figure 22. Results of fitting using the developed adaptive re-mapping for:  a) B-spline 

with 15x20 CPs grid, b) B-spline with 15x9 CPs grid 

Next, the evaluation of T-spline surface is conducted. At first, fitting using a T-spline 

surface with 15x20 control points (equivalent to fitting a B-spline surface) was used as the initial 

solution. Next, as a simple test of T-spline fitting, just two additional control points were added 

at the location of the largest error. This was conducted in two subsequent iteration steps. In the 

procedure flowchart (Figure 21) this addition of CPs would appear after the fitting of parametric 

surface P(u,v) to new point-cloud F(u,v), and before the calculation of the relaxation surface 

step. This means that before and after each CP addition, the adaptive re-mapping step was 

conducted.  
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Figure 23. Fitting results 

A comparison of the error when using 15x9 and 15x20 CPs B-spline surfaces with the 

(15x20+2) CPs T-spline is illustrated in Figure 24. When comparing two B-spline cases, an 

increase of the number of control points by 165 reduces the maximum error from 24 mm to 19 

mm. When the T-spline is used starting from the 15x20 CPs B-spline with just two additional 

CPs, a reduction of the maximum error value from 19 mm to 12 mm is obtained. The error is 

reduced at the location of the maximum value while at the rest of the fitted surface the fitting 

error remains the same.  Although the error is reduced by application of the T-spline surface in 

comparison to B-spline surface, the T-spline requires an additional algorithm for CP insertion. 

This limits the application of standard optimization methods. 

 
                                 a)                                                                                   b) 

 
c) 

Figure 24. Comparison of error distributions for: a) B-spline with 15x9 CPs grid, b) B-

spline with 15x20 CPs grid and b) T-spline with 15x20 CPs grid and additional control points 
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3.3.3. Sensitivity based re-parameterization 

The previous part of this section has shown how to apply the adaptive fitting procedure 

for geometric fitting. This section will show that the same procedure can be applied for control 

point redistribution in shape optimization. The idea is presented on a topology optimization 

example in which the density of material is optimized using a variant of gradient based 

optimization, so called SIMP approach [71].  The solution represented as material density 

distribution for the selected problem using the SIMP approach is shown in Figure 25a. 

 
a) 

 
b) 

Figure 25. Topologically optimized structure a) distribution of material density b) 

magnitude of the sensitivity field gradient. 

Instead of standard SIMP approach, here a B-spline surface was used to describe the 

density of the material and the optimization variables were the B-spline control points. It is 

appropriate to choose only the z coordinate of the control-points as optimization variables. In 

the same way to as in the SIMP method, a gradient based optimization was conducted.  

Optimization result (B-spline surface) for the case without the adaptive fitting procedure is 

shown in Figure 26a. An enhanced procedure is developed which conducts the adaptive control-

point redistribution using the sensitivity field (Figure 25b shows the gradient magnitude of the 

sensitivity field). Conducting this adaptive fitting procedure several times during the 

optimization results in better control-point distribution (Figure 26b) in comparison to the first 

optimization case. 

 
a) 

 
b) 

Figure 26. Density field described by B-spline surface: a) solution with constant x-y 

control-point coordinates and b) solution with constant x-y control-point coordinates and 

adaptive redistribution in x-y direction. 
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3.3.4. Application to multi-patch parameterizations 

For simple geometric shapes, such as half-sphere, there is no need for multi-patch 

surfaces as illustrated in Figure 27. 

 
Figure 27. Single-patch B-spline surface describing a half-sphere. 

 However, some geometric shapes cannot easily be described by a single-patch surface.  

An example is a half-cube which is composed of five connected patches as illustrated in Figure 

28a.  The adaptive fitting can be used in these cases to reduce a multi-patch parameterization to 

a single patch parameterization as shown in Figure 28b. 

 
a) b)       

Figure 28.Half-cube described by: a) multi-patch parameterization with 5 B-spline 

surfaces and b) Single-patch B-spline surface obtained by adaptive fitting 

Some more complex shapes are even harder to describe using a single-patch surface. 

The example is a two-bladed propeller which usually requires many mutually connected patches 

as shown in Figure 29a. The proposed adaptive fitting procedure can be used even in this 

complex case to reduce the multi-patch parameterization to a single patch B-spline surface as 

illustrated in Figure 29b. 
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a) b)       

Figure 29.Two-bladed propeller described by: a) multi-patch parameterization (only two 

out of many B-spline patches are shown) and b) Single-patch B-spline surface obtained by the 

adaptive fitting. 

This kind of fitting is useful on its own but it allows additional possibilities. Usually, 

differently patched shape parameterizations can be modified on their own, but they cannot be 

mixed together. But as it was shown, the adaptive fitting enables the reduction of complex multi-

patch surface to a good single-patch approximation. This could allow the optimizer to use 

standard optimization methods for the cases where various patch configurations exist. For 

example, once the reduction to single-patch is conducted, the genetic crossover operator can 

easily be used without additional procedures. Otherwise, the various parameterizations (multi-

patch, single-patch) would have different chromosomes preventing application of the genetic 

operators. Several crossover examples are shown in Figure 30. 

   
              a)                           b)                       c)                                                       d) 

Figure 30. Crossover of single-patch surfaces: a) crossover of half-sphere and half-cube 

at chromosome mid-point and b) two-point crossover of half-sphere and half-cube c)   crossover 

of half-sphere and boat propeller at chromosome mid-point and d) two-point crossover of boat 

propeller and half-cube 
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4. SUMMARY OF COMPLEMENTARY PAPERS 

This section presents short summaries of the complementary papers and the respective 

scientific contribution. 

4.1.  Paper 1: Multi-regime shape optimization of fan vanes for energy 

conversion efficiency using CFD, 3d optical scanning and parameterization 

The first paper is titled: Multi-regime shape optimization of fan vanes for energy 

conversion efficiency using CFD, 3d optical scanning and parameterization. The topic of the 

paper is shape optimization of a centrifugal roof fan.  The first part of the paper consists of 

experimental tests in which the performance of the fan was measured. Next, a CFD model for 

simulation of the centrifugal fan performance was developed and validated with the 

experimental data. In this paper, a B-spline curve was used for the development of a generic 

shape optimization procedure. The original contribution of the paper is the analysis of B-spline 

application for centrifugal fan optimization. The paper developed new vane shapes which can 

potentially improve the efficiency of this kind of machines. The paper also includes the 

development of an original optimization workflow for optimization of the centrifugal fan 

subjected to multiple working conditions which could appear during the operation lifetime.   

4.1.1. PhD candidate contribution 

Marinić-Kragić initiated the paper by conducting several different variations of the 

centrifugal fan shape optimization and obtaining promising results. Marinić-Kragić wrote the 

part of the paper regarding the shape parameterization, integration of different software tools 

and the results. Marinić-Kragić has also developed an original numerical workflow for 

optimization of centrifugal fan subject to variable operating conditions. 

4.2. Paper 2: 3D shape optimization of fan vanes for multiple operating regimes 

subject to efficiency and noise related excellence criteria and constraints 

The second paper is titled: 3D shape optimization of fan vanes for multiple operating 

regimes subject to efficiency and noise related excellence criteria and constraints. This paper 

includes a more detailed investigation of possible energy efficiency improvements for 

centrifugal fans. In comparison to previous researchers, the original contribution is the usage of 

a completely generic B-spline surface in combination with multi-regime optimization. The 

result of the paper are several new 3D shapes which could additionally improve the centrifugal 

fan energy efficiency. The paper also includes an elementary noise analysis and multi-objective 

optimization. By conducting a multi-objective optimization, it was shown that a compromise 

between the energy efficiency and noise emissions could be obtained. It was shown that a hybrid 

optimization method that combines the GA in the initial phase and the Nelder-Mead method in 

the final phase leads to fast convergence to the global optimum. 

4.2.1. PhD candidate contribution 

Marinić-Kragić initiated the paper by extending the optimization cases from the previous 

paper by using a generic 3D B-spline surface.  Marinić-Kragić has written the largest part of the 
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paper. In this paper, Marinić-Kragić has investigated the possibilities of improvements in energy 

efficiency conversion for centrifugal fans in more detail compared to the previous paper. 

Marinić-Kragić also developed the numerical implementation. 

4.3. Paper 3: Numerical models for robust shape optimization of wind turbine 

The paper C is titled: Numerical models for robust shape optimization of wind turbine 

blades. The topic of this paper are numerical models for analysis of horizontal-axis wind 

turbines, which includes the analysis of pre-existing shape parameterization methods. The paper 

also develops original shape parameterization methods which offer additional freedom of shape. 

It was shown that the original parameterization can be adjusted to site specific wind conditions 

described by a statistical distribution. The paper finally shows how to integrate all required 

elements in a numerical shape optimization workflow and presents several preliminary results.  

4.3.1. PhD candidate contribution 

In this paper, Marinić-Kragić analyzed the existing methods for wind-turbine blade 

shape parameterization. Furthermore, Marinić-Kragić has showed that by using an original 

method of shape parameterization, greater freedom of shape and better adaptivity of the blade 

shape to specific location conditions can be achieved. Marinić-Kragić used a CFD model of a 

wind turbine and compared the results with the experimental data. Marinić-Kragić has showed 

the method for integrating all elements of the shape optimization procedure in a numerical 

workflow for wind-turbine shape optimization. Marinić-Kragić has written the sections of paper 

regarding shape parameterization, optimization procedures and the results. 

4.4. Paper 4: Numerical workflow for 3D shape optimization and synthesis of 

vertical-axis wind turbines for specified operating regimes 

The paper four is titled: Numerical workflow for 3D shape optimization and synthesis 

of vertical-axis wind turbines for specified operating regimes. This paper is concerned with 

specifics of vertical-axis wind turbine (VAWT) optimization and shape parameterization. In 

comparison to the previous paper dealing with HAWTs, VAWT-s appear in far more mutually 

very different shapes. This paper develops an original method for shape optimization of 

VAWTs.  The developed method can be used in an optimization procedure which starts from a 

random shape and converges towards different shapes depending on a selected operating 

condition (tip speed ratio and wind speed). This way, the computer can independently and 

without an initial solution numerically synthetize a VAWT shape designed for a specific 

location and operating conditions. The paper also compares the results obtained by using local 

and global shape optimization and it was shown that global shape optimization leads to designs 

with better energy conversion efficiency. Several optimization algorithms were tested, but GA 

algorithms have shown the best results.  

4.4.1. PhD candidate contribution 

Marinić-Kragić extended the methods from the previous paper (concerning HAWTs) to 

VAWTs for which Marinić-Kragić has developed an original shape parameterization method. 



Chapter 4: SUMMARY OF COMPLEMENTARY PAPERS 

 

45 

 

On several numerical examples, Marinić-Kragić has shown the advantage of this method in 

comparison to classical optimization which starts from and initial solution. Marinić-Kragić 

written and presented the paper at EWEA 2015 conference and at ESTECO UM16 conference. 

4.5. Paper 5: Reverzno inženjerstvo i dvo-stupanjska optimizacija brodskog 

vijka i sapnice pomoću B-spline ploha 

The fifth paper is titled: “Reverzno inženjerstvo i dvo-stupanjska optimizacija brodskog 

vijka i sapnice pomoću B-spline ploha”.  This paper analysis the application of B-spline surfaces 

for optimization of a ducted boat propeller. The paper proposed that the optimization procedure 

can be conducted in two steps, first is the optimization with fixed propeller and following is the 

optimization of both the propeller and the duct simultaneously. The original contribution of the 

paper is the usage of B-spline surfaces for ducted boat propeller optimization. 

4.5.1. PhD candidate contribution 

This paper was mostly the work of graduate student Bagavac, where Marinić-Kragić has 

assisted in writing the paper and in technical details of coupling the B-spline shape 

parameterization with the CFD analysis.  

4.6. Paper 6: Efficient shape parameterization method for multidisciplinary 

global optimization and application to integrated ship hull shape 

The paper six is titled: Efficient shape parameterization method for multidisciplinary 

global optimization and application to integrated ship hull shape. In this paper, an original 

method for ship parameterization was developed. The parameterization method was tested using 

the enhanced fitting procedure (section 3.1) and it was shown that the method achieves a 

reduction in the number of variables and improves the shape generality. The parameterization 

method enables both shape and topology changes. The paper also shows how to integrate the 

procedure in a multi-disciplinary optimization which includes structural and flow analysis 

(construction price and hydrodynamic resistance). The result of the optimization is thus 

multitude of Pareto-optimal solutions which allows the decision maker to select the desired 

compromise between the construction price and hydrodynamic resistance.  

4.6.1. PhD candidate contribution 

Marinić-Kragić applied the mentioned original shape parameterization method for ship 

hull optimization. Marinić-Kragić has conducted a comparison of several shape 

parameterization methods with a variable number of control points using three mutually 

different hull shapes. Also, Marinić-Kragić has shown how to integrate the proposed 

parameterization as a part of a shape optimization workflow which includes flow analysis and 

structural analysis. Marinić-Kragić wrote the paper and developed the numerical 

implementation. 
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4.7. Paper 7: Numerical analysis of energy efficiency performance and noise 

emissions of building roof fan 

The seventh paper is titled: Numerical analysis of energy efficiency performance and 

noise emissions of building roof fan. The paper compared various numerical models for energy 

efficiency performance and noise emissions predictions of building roof fan. It can be concluded 

that computationally efficient numerical models are required for accurate simulation of energy 

efficiency performance while accurate noise prediction requires high fidelity models. The 

results can be used to select which numerical models can be used in various stages of the 

optimization procedure.  

4.7.1. PhD candidate contribution 

Marinić-Kragić has written the paper and developed the numerical implementation. This 

includes the numerical implementation of the several different numerical CFD methods, and 

programming required for noise analysis based on the CFD results.  

4.8. Paper 8: Adaptive re-parameterization based on arbitrary scalar fields or 

shape optimization and surface fitting 

The seventh paper is titled: Adaptive re-parameterization based on arbitrary scalar fields 

or shape optimization and surface fitting. The paper presents the developed adaptive 

parameterization method. The paper introduces a re-parameterization method which can be used 

in combination with any scalar field. The method can be used in both geometric fitting and shape 

optimization. Several results show that the method is applicable for geometric fitting of mutually 

very different geometries. The method was compared to similar feature sensitive 

parameterization and it was shown that the developed method results in smoother surfaces that 

are suited for application in shape optimization. 

4.8.1. PhD candidate contribution 

Marinić-Kragić developed a novel re-parameterization method that smoothly re-

distributes the B-spline control points towards the desired areas. Marinić-Kragić has written the 

paper and developed the numerical implementation. This includes the programming required 

for implementation of the method, testing the method on several mutually very different 

geometries and comparing the method to a similar method found in the literature.  
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5. CONCLUSION  

Engineering shape optimization with integrated numerical simulations is a demanding 

multidisciplinary problem and various methods for conducting the optimization procedure exist. 

While various numerical simulations could be required, this doctoral thesis considers mostly 

CFD because of its wide usage in combination with shape optimization. Also, CFD involves 

problems such as time-consuming simulations and non-linear governing equations, making it a 

representative of common engineering numerical simulation. By conducting several different 

test cases [1]–[6], it was shown that both global and local optimization methods are required to 

efficiently solve an engineering optimization problem. After the investigation of various 

optimization methods, two approaches could be highlighted: gradient sensitivity-based method 

(as used in section 3.3.3), appealing because of its computational efficiency; and an integrated 

numerical workflow based on genetic-algorithms (GA), attractive since it offers a generic 

approach to wide array of optimization problems. While the sensitivity-based method offers a 

promising solution with fast optimization times, it has several disadvantages. First, it is not 

suitable for global optimization since it is by nature gradient-based. Since the objective 

function(s) and constraints are highly nonlinear and can contain noise, it is common that even a 

local optimum will not be reached from a selected initial solution. Engineering optimization can 

also contain discrete variables which cannot be solved by classical gradient methods.  

Furthermore, engineering optimization problems usually involve several objectives, making 

them suitable for GA based methods. A generic engineering shape optimization task can be 

solved by linking GA with shape parameterization methods, and (multiple) engineering 

simulation nodes in an integrated numerical workflow. Nevertheless, fast gradient based 

methods could eventually be implemented when the GA obtains a solution close to the global 

optimum. When using the GA, each generated shape needs to be subject to a time consuming 

numerical simulation. One of the major concerns in this kind of optimization is that a large 

number of simulations requires great computational effort. 

 

One of the most important parts of the optimization problem is selecting a suitable 

parameterization method. If parameterization is selected such that the respective geometry can 

be described with a small number of parameters while keeping the shape generality, the number 

of necessary simulations can be reduced thus allowing practical realizations of the optimization 

procedure. Many different shape parameterization methods were considered as a part of this 

thesis and several novel methods were developed for specific applications. The first shape 

parameterization method considered in this thesis was the B-spline curve. In [1], B-spline curves 

were used for centrifugal fan vane 2D shape parameterization, while the 3D shape was 

constructed by extruding a 2D geometric entity. Generic parameterization method based on the 

B-spline curve enables both constant and variable vane thickness. Following the promising 

application of B-spline curves, a fully generic B-spline surface was used in [2]. Each B-spline 

control point has 3 degrees of freedom, and the B-spline requires at least 4x4 control point grid 

surface (3rd order B-spline with clamped ends was used). If all possible degrees of freedom were 
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used, this would result in 48 degrees of freedom which is not appropriate for global shape 

optimization. A parameterization method was developed such that there is only one degree of 

freedom per control point but an additional B-spline surface was used for trimming the leading 

edge. This way the number of degrees of freedom was reduced while keeping the shape 

generality. It was shown that both single and multi-objective optimization can be conducted 

using the developed procedure. However, accurate noise prediction requires high fidelity models 

which were investigated in [7]. The developed parameterization method is appropriate for 

constant thickness vanes. It was also interesting to note that the shape obtained by the 2D shape 

parameterization in [1] looks like the average of individual 2D cross-sections of the shape 

obtained by the 3D shape parameterization in [2].  

An example of a complex shape which requires different shape parameterization is the 

wind turbine blade. Wind turbines can generally be divided in horizontal axis wind turbines 

(HAWT) and vertical axis wind turbines (VAWT). As it was shown in [3], [4], HAWT 

parameterization is comparatively simpler as the shape of the blade is airfoil-based with span-

wise scaling and rotation. Several HAWT parameterization methods were considered in [3]. It 

was shown that the generic B-spline surface can be used in an optimization procedure to obtain 

superior results in comparison to an airfoil-based parameterization. Nevertheless, the 

applicability is limited by the CFD accuracy and currently available computational resources.  

In comparison to HAWT parameterization, VAWT parameterization should cover a 

wider array of shapes such as the Savonius and the Darrieus VAWT designs. It was shown in 

[4] that it is possible to devise such parameterization which can cover both the Savonius and the 

Darrieus designs using only 15 shape parameters. The proposed parameterization method was 

successfully used and it was shown that autonomous design synthesis is possible.  A similar 

shape parameterization method was used in [5] for a ducted boat propeller parameterization.  

A very different object that is commonly subject to shape optimization is ship hull. This 

also means that a different shape parameterization method is required. For this purpose a novel 

method that is able to describe both shape and topology changes was developed in [6]. The 

method was tested on three different boat shapes and it was shown that ship hull shape can be 

described with much fewer shape variables compared to a standard full 3D B-spline surface. 

Also, it was shown that the method is applicable to multi-objective optimization and has an 

ability to start from an initially random shape.  

Generally, it can be concluded that B-spline surfaces can be used for generic shape 

parameterization in various different engineering problems, but using all the available B-spline 

degrees of freedom would still result in a large amount of optimization variables. Thus, modified 

parameterizations should be developed depending on the specific problem. Afterwards, 

autonomous design synthesis can be achieved even with modest computational resources.  

 

A more generic parameterization approach called the adaptive re-parameterization was 

developed in [8].  This approach is not application-specific and can potentially be used in many 

engineering shape optimization problems. The adaptive re-parameterization requires the 

selection of a scalar field which is used to re-distribute the B-spline control points towards the 
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desired area. If this field is selected appropriately, the B-spline control points will have a dense 

distribution in areas with complex geometry by removing the control points from simpler 

regions (such as flat or constant-curvature regions) in which they are not required. This permits 

the usage of fewer control points thus reducing the number of optimization variables while 

keeping the shape generality. A structural optimization case was shown in this thesis as an 

example where the sensitivity field with respect to the structural compliance was used as the 

scalar field. It was shown that the adaptive re-parameterization method could also be used for 

more complex cases which otherwise require a surface composed of multiple B-spline patches. 

These cases give rise to several problems regarding the optimization process. The main problem 

is the optimal number of patches and the way in which they should be connected. To solve this 

problem, an intermediate method that uses single patch B-spline surface fitted by the adaptive 

re-parameterization procedure can be used.  Once a multi-patch surface is converted to an 

equivalent single-patch surface, standard optimization algorithms can be used as shown in 

section 3.3.4.  

5.1. Ongoing and future work 

This doctoral thesis showed several possibilities for the reduction of the number of 

variables in engineering shape optimization problems. Still, there is no universal shape 

parameterization and this leaves room for further improvements. Parametric shape fitting 

methods were shown to be applicable to existing shapes as a method for evaluating individual 

shape parameterization methods but this might even be conducted during optimization, which 

allows for switching between different parameterization methods. It was also shown that 

adaptive fitting can be used for redistribution of the control-points towards the desired areas 

which allows for reduction of the number of shape variables and increased shape resolution in 

needed areas. Although several test were conducted, additional tests are required to verify if the 

method is more universally applicable. The possibility of optimization using different patch 

topologies was also shown but an actual optimization case has yet to be conducted.  
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ŽIVOTOPIS 

Ivo Marinić-Kragić, rođen je u Splitu  02.11.1987 godine. Nakon pohađanja osnovne 

škole Marjan i srednje Industrijske škole u Splitu, smjer strojarstvo - obrađivanje odvajanjem 

čestica, započeo je studiranje na Fakultetu elektrotehnike strojarstva i brodogradnje u Splitu. Na 

stručnom studiju brodogradnje, završio je s odličnim uspjehom i dobio nagradu za najboljeg 

studenta stručnog studija brodogradnje. Nakon toga, Marinić-Kragić upisuje razlikovni studij 

strojarstva što je uvjet za nastavak diplomskog studija strojarstva. Na diplomskom studiju 

strojarstva, Marinić-Kragić je uključen u mnoge studentske projekte a najznačajniji je 

međunarodni projekt Formula Student koji je rezultirao s izradom prvog trkaćeg vozila tog tipa 

na Sveučilištu u Splitu. U sklopu projekta, Marinić-Kragić je sudjelovao na dva međunarodna 

natjecanja u Italiji (2013) i Češkoj (2014). Diplomski studij strojarstva Marinić-Kragić završava 

s odličnim uspjehom i dobiva nagradu za najboljeg studenta diplomskog studija strojarstva. Već 

tokom diplomskoj studija Marinić-Kragić započinje s znanstvenim radom, a iz istraživanja 

uključenog u diplomski rad su ukupno proizašla 3 znanstvena članka CC kategorije koja su 

vezana i za  doktorski rad. Nakon završenog diplomskog studija, nastavio je znanstveni rad na 

poslijediplomskom doktorskom studiju strojarstva kojega u početku pohađa o vlastitom trošku. 

Uz doktorski studij strojarstva, Marinić-Kragić paralelno radi u poduzeću Stipsa d.o.o kao 

stručni suradnik za strojarstvo i u poduzeću Projekt Mensio d.o.o. kao razvojni inženjer na 

projektu razvoja bespilotne letjelice. Uz to, Marinić-Kragić obavlja nastavni rad iz kolegija 

analiza primjenom računala, programiranje i metodičko optimiranje kao vanjski suradnik za 

izvođenje nastave na Fakultetu elektrotehnike strojarstva i brodogradnje. U ožujku 2015, 

Marinić-Kragić se zapošljava na Fakultetu elektrotehnike strojarstva i brodogradnje kao asistent 

s punim radnim vremenom i prestaje s redovnim radom u navedenim poduzećima. Međutim, 

još uvijek Marinić-Kragić nastavlja rad na započet u poduzeću Stipsa d.o.o., a taj rad je 

rezultirao s dva računalna programa vezana za energetsko certificiranja zgrada. Za vrijeme 

doktorskog studija Marinić-Kragić sudjeluje i u projektu MotoStudent,  koji je rezultirao 

izradom prvog trkaćeg motorkotača ove vrste u Hrvatskoj. Projekt MotoStudent-2016 je završio 

natjecanjem u Španjolskoj u rujnu 2016. Marinić-Kragić planira doktorski rad obraniti po 

„Skandinavskom modelu“ što će biti prvi rad napravljen po ovom modelu na Fakultetu 

elektrotehnike strojarstva i brodogradnje u Splitu. 
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