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1. Introduction 
 

Generally, mathematical and computational models in electromagnetism serve as a 

description of a physical system by using the mathematical concepts and language. Computer 

simulations are run based on a set of known input parameters in order to compute quantities of 

interest. A model may help to explain a system, to study the effects of different components, 

and to make predictions about its behaviour. 

However, all computational model face two important issues. On one side the question is if 

the equations are solved correctly and on the other side if the equations being solved are correct. 

These two questions are tackled in the process of verification and validation of a computational 

model. The first one is related to a controllable procedure of building a model where it is 

possible to estimate the errors introduced by algorithms and mathematical description. The 

second question is associated with the lack of knowledge in the input parameters required for 

performing the analysis. Consequently, the uncertainties present in the input parameters are 

propagated to the related response. Uncertainty propagation (UP) techniques provide the 

mathematical description of the propagation of the uncertainties thus perfoming the uncertainty 

quantification (UQ) of the output variables. 

The traditional uncertainty propagation methods rely upon the statistical approaches such 

as Monte Carlo sampling. These sampling based methods are easy to implement and very 

robust. However, they exhibit a slow convergence demanding a large number of samples to 

feed the deterministic solvers.  

In the past few decades there has been a lot of effort to find the optimal uncertainty 

propagation technique. Contrary to statistical approaches the non-statistical based ones aim to 

represent the unknown stochastic solution as a function of random input variables. The nature 

of these methods can be intrusive or nonintrusive. The intrusiveness implies a more demanding 

implementation since new codes need to be developed, while the non-intrusive methods enable 

the use of previously validated deterministic models as black boxes in stochastic computations. 

Both approaches exhibit fast convergence and high accuracy under different conditions.  

This work has two goals. The first one is to outline some of the most popular UQ/ UP 

methods in computational electromagnetics (CEM). Chapter 2 introduces some basic concepts 

of UQ framework and sensitivity analysis. The sensitivity analysis shows how the uncertainty 

in the output of a mathematical model or system can be apportioned to different sources of 
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uncertainty in its input parameters. This work investigates the “One-At-a-Time” (OAT) and the 

“Analysis Of Variance” (ANOVA) based approaches. 

In three chapters to follow the basic concepts of three uncertainty propagation methods are 

given: generalized polynomial chaos (gPC), stochastic collocation method (SCM) and 

stochastic reduced order model (SROM) method.  

The second goal of this work is to give an overview of the stochastic analysis reported so 

far in the area of computational electromagnetism (CEM). Chapter 6 is entirely dedicated to 

this review. 

Finally, in chapter 7 a stochastic sensitivity analysis of bioheat transfer equation is presented 

in which the efficiency of the Stochastic Collocation versus Monte Carlo method is 

demonstrated.   
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2. Uncertainty quantification framework 
 

Modelling the electromagnetic system can be viewed as the mathematical idealization of 

the physical processes governing its evolution. The process of building a mathematical model 

requires the definition of system geometry, material properties and the relationships between 

various quantities of interest. Rapid development of computer science enabled the numerical 

evaluation of approximated solutions of the mathematically described electromagnetic systems. 

However, it is important to question how confident we are about our models. Namely, there are 

two independent procedures that are used together for checking that a product, service, or 

system meets requirements and specifications and that it fulfils its intended purpose: the 

processes of verification and validation (V&V) [1]. The definitions for the V&V processes 

taken from the “Guide for the Verification and Validation (V&V) of Computational Fluid 

Dynamics Simulations” by The American Institute for Aeronautics and Astronautics (AIAA) in 

1998 are as follows: 

Verification – the process of determining that a model implementation accurately represents 

the developer’s conceptual description of the model. 

Validation – the process of determining the degree to which a model is an accurate 

representation of the real world for the intended uses of the model. 

From the definitions it is obvious that the verification answers the question: “Are we solving 

the equations correctly?” which is a question coming from the mathematics’ point of view [1]. 

The deficiencies between the mathematical idealization or algorithms and the actual physical 

process they represent can be recognized and measured as errors. The sources of errors can be 

the round-off, limited convergence of iterative algorithms, implementation mistakes (bugs), etc. 

On the other hand, the validation is a process that answers the question: “Are we solving 

the correct equations?” which relates to the physics’ point of view [1]. In this case the deficiency 

originates in our lack of knowledge about the input physical parameters required for performing 

the analysis. As such, the uncertainties can be divided into reducible and irreducible 

uncertainties. The uncertainty which can be reduced by increasing our knowledge, e.g. by 

performing more experimental investigations and/or developing new physical models is called 

epistemic or systematic uncertainty. On the other hand, the aleatory or statistical uncertainty 

cannot be reduced as it rises naturally from the observations of the system. Some additional 

experiments in this case can only be used to better characterise the variability. 
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The usual practice in the electromagnetic engineering is to use average values of input 

parameters thus leading to a rough representation of reality. However, the uncertainty present 

in input parameters can be quantified by using the statistical/ stochastic tools and propagated to 

the output value of interest via suitable uncertainty propagation method. The whole UQ 

framework is depicted in the Fig. 2.1. 

 

 

Figure 2.1.  The uncertainty quantification (UQ) framework 

 

2.1.Uncertainty quantification (UQ) of model input parameters 

 

The parameters with uncertainties are identified and represented in terms of random 

variables/ fields. Based on the available information, the UQ of the input parameters can be 

done by using the direct methods such as experimental observations, theoretical arguments or 

expert opinions, or by using the inverse methods such as the inference, calibration, etc [1]. The 

UQ of input parameters is a demanding task and the detailed discussion related to its theory and 

approaches is out of the scope of this work. A review of available tools can be found elsewhere, 

e.g. in [2] - [4].  

For the majority of scenarios encountered in the area of CEM the input parameters are 

modelled as random variables (RV) attributed with the corresponding standard probability 

density function (pdf). Furthermore, in many CEM applications the variables are assumed to be 

independent. In this work a random input variable is denoted by X. If there are more than one 

random input parameters, a vector of d random input parameters is formed: 
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X = [X1, …, Xd]  

Since in practice RVs which represent the input parameters are usually not standardized, the 

random vector X has to be transformed into a set of reduced variables through an 

isoprobabilistic transform [5]. Depending on the marginal distribution of each input variable 

Xk, k = 1, …d, the associated reduced variable may be standard normal: ξ ~ N(0,1), standard 

uniform: ξ ~ U(-1,1), or some other variable with standard distribution. Thus, the resulting 

vector of input parameters is denoted by: 

ξ = [ξ1, …, ξd] 

Figure 2.2. shows the random variables with three typical standard distributions, uniform, 

normal, and beta, respectively. 

 

   

𝑝𝑑𝑓(𝑥) =  
1

2
,    𝑥 ∈  [−1, 1] 

𝑝𝑑𝑓(𝑥) =  
1

√2𝜋𝜎2
𝑒

−
(𝑥−𝜇)2

2𝜎2 , 

𝑥 ∈  [−∞,∞], 𝜇 = 0, 𝜎 = 1 

𝑝𝑑𝑓(𝑥) =
(1 − 𝑥)𝛼(1 − 𝑥)𝛽

𝐵(𝛼, 𝛽)
 

𝑥 ∈  [0, 1], 𝛼 = 2, 𝛽 = 5 

 

Figure 2.2.  The probability density functions (pdf) of a random variable with uniform, 

standard normal and beta distribution, from left to right, respectively 

  

2.2.Uncertainty propagation (UP) 

 

The first and also the most important step in the stochastic analysis of the output value of 

interest is the uncertainty propagation (UP) of uncertainties from the input parameters to the 

output by means of some UP method. Given the model M we seek to represent the output Y as 

a function of input random variables (Fig. 2.4.). Different methods exist and they can be 
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classified in several ways. The general classification is into the statistical and non-statistical 

methods. 

 

Figure 2.4.  The uncertainty propagation (UP) of input uncertainties to the model output 

 

The statistical methods are straightforward to implement as they are all sampling based 

methods. Their accuracy depends on the sample size which can turn out to be computationally 

very expensive. However, the sample size does not depend on the stochastic dimensionality of 

a problem, i.e. the number of random input parameters, which means that the methods do not 

suffer from the “curse of the dimensionality”. Some representative methods in this group are: 

Monte Carlo (MC) sampling, Latin Hypercube Sampling (LHS), etc. 

The aim of non-statistical methods is to avoid the problem of large sample size present at 

the traditional statistical approaches. Such methods exploit different approaches e.g. the 

functional approximation theory or novel algorithms for optimization for “smarter” non-

statistical sampling, and the combination of them. 

The first group of non-statistical methods aims to represent the unknown stochastic solution 

as a polynomial in the stochastic space of input parameters. Among various techniques available 

in the literature, two emerged as the most often used approaches in the stochastic CEM. The 

first one is a spectral discretization based technique, known as the generalized polynomial chaos 

expansion (gPCE). The gPCE framework implies intrusive approach to dealing with the 

uncertainties in the input and output parameters which leads to a mandatory change of 

governing equations [6], [7]. Once the equations are adapted to a stochastic point of view it 

takes only one run to obtain the desired stochastic output. However, the procedure can be very 

challenging when the governing equations take complicated forms. 

The second non-statistical approach based on the polynomial representation of the output 

value relies on the high-order stochastic collocation (SC) techniques which are based on 
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deterministic sampling [6], [8]. Its non-intrusive nature enables the use of previously validated 

deterministic models as black boxes in stochastic computations, therefore the use of SC is not 

affected by the complexity or nonlinearity of the original problem [6]. The SC method combines 

the sampling nature of MC method and the polynomial approximation of the output from the 

gPCE. Although the total number of samples required for stochastic analysis is lower than in 

case of MC, the SC method suffers from the “curse of the dimensionality” for large number of 

input RVs. This problem is alleviated to certain extent by use of high-order methods such as 

sparse grids and cubature rules. Both gPCE and SC approaches exhibit fast convergence and 

high accuracy under different conditions which has been reported in many applications. 

However, it can be stated that gPCE offers the best accuracy in multi-dimensional random 

spaces and it should always be used when the coupling of gPCE does not involve additional 

computational cost or when efficient solvers for decoupling the Galerkin system of equations 

exist [6]. The comparison of the two approaches is documented in [9]-[11]. Both are well 

established UP methods and their respective variants are still being developed. 

In order to outperform the well-established methods such as gPCE and SC, in recent years 

a different type of non-statistical methods emerged: the methods based on the optimization and 

pattern classification algorithms [12], [13] and machine learning [14]. In this work a stochastic 

reduced order model (SROM) method will be outlined. 

 

2.2.1. Monte Carlo method 

 

One of the most commonly used methods for the stochastic simulation of an arbitrary 

system affected by random variations is Monte Carlo method, or one of its variants. Monte 

Carlo (MC) is a statistical sampling method popularized by physicists from Los Alamos 

National Laboratory in the United States in the 1940s. The MC algorithm is robust and 

relatively simple. Due to its intuitiveness and versatility it is often used for design purposes and 

also as a reference tool against which other methodologies are compared. The details about the 

MC based methods are out of the scope of this work, and complete definition with thorough 

discussion can be found elsewhere, e,g, [15], [16]. Here the MC is considered as a 

computational algorithm relying on repeated random sampling to obtain statistical information.  

The general MC procedure can be outlined as follows: 

1. Determine random input parameters and their corresponding distributions. 
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2. According to distribution of input parameters, generate a set of random samples {X(k} 

with k = 1, … NMC. For d>1 each sample is d-dimensional, i.e. X(k)= [X(k)
1 …X(k)

d]. It is 

worth noting that in practical applications a pseudorandom sequences are used [15]. 

3. The deterministic solver is run repeatedly for each input sample. The output of a model 

Y(k) is the model realization for the k-th input sample: Y(k) = M(X(k)). For NMC input 

samples the MC simulation results in set of output samples {Y(k)}, k = 1… NMC. 

4. The results (NMC outputs of deterministic solver) are collected and analysed in order to 

obtain the statistical information. 

The MC estimators of stochastic moments and probability density function are given as 

follows. The mean value of the output variable can be estimated by using the following 

expression: 

 𝜇(𝑌) ≈ 𝜇̂(𝑌) =  
1

𝑁𝑀𝐶
∑ 𝑌(𝑘)

𝑁𝑀𝐶

𝑘=1

 (2.1) 

Different MC simulations for the same system and with the same number of samples NMC will 

produce different values of estimated mean value, therefore 𝜇̂ itself is a random variable. The 

error estimate for the MC method follows directly from the central limit theorem. The set of 

{Y(k)} represents the set of vectors with independent and identically distributed random 

variables, therefore the distribution function 𝜇̂ converges in the limit of NMC  ∞, to a Gaussian 

distribution and the widely adopted concept is that the error convergence rate of MC is inversely 

proportional to the square root of the number of realizations. 

The MC estimator of the variance is given as: 

 𝜎𝑌
2 = 𝑉(𝑌) ≈  𝜎̂2 = 

1

𝑁𝑀𝐶 − 1
∑(𝑌(𝑘) − 𝜇̂)

2

𝑁𝑀𝐶

𝑘=1

 (2.2) 

Beside some specific situations, there is no explicit expression for the variance of the 

estimator 𝜎𝑌
2. Nevertheless, some general qualitative conclusion can be drawn that the 

convergence rate of the variance estimator is similar to the convergence rate of the mean 

estimator but its fluctuation will be in general larger. 

The probability density function (pdf) of output Y, fy(Y), is constructed at a discrete set 

of points {Y(j)},  j = 1 … B, from the samples {Y(k)}, k = 1… NMC. The points Y(j) are considered 
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to be equally spaced by Δy=(Y(B) – Y(1)/(B-1). The value of the pdf at the point Y(j) can be 

estimated as: 

 𝑓𝑦(𝑌
(𝑗)) =  

𝑛𝑗

𝑁𝑀𝐶  ∆𝑦
 (2.3) 

where nj is the number of samples Y(j) from the interval [Y(j) – Δy/2,  Y(j) + Δy/2]. The pdf of 

variable Y is approximated by a staircase function, or histogram, were a bin is associated to 

each point Y(j). The accuracy of the pdf estimator can be improved with large values of B and 

NMC.  

The accuracy of the stochastic moments and the pdf depends directly on the total number 

of samples NMC and not on the number of random input variables. Thus the method does not 

suffer from the “curse of the dimensionality”. However, the desired accuracy can be 

accomplished only for a very large NMC which leads to a prohibitive computational burden. 

 

2.3.Sensitivity analysis (SA) 

 

One of the definitions for the sensitivity analysis, adopted in this work as well, is the one 

describing it as the study of how the uncertainty in the output of a mathematical model or system 

(numerical or otherwise) can be apportioned to different sources of uncertainty in its inputs 

[17]. The ideal approach would be to run both uncertainty quantification and sensitivity analysis 

in the same stochastic framework, usually UQ preceding the SA, thus minimizing the 

computational burden as much as possible. 

There are many SA methods available in literature and the particular choice depends on 

actual purpose. The extensive study on different SA approaches can be found elsewhere, e.g. in 

[17]. In this work two approaches will be dealt with: the so-called “one-at-a-time” approach 

and the approach based on the variance analysis. 

 

2.3.1. “One-at-a-time” (OAT) approach 

 

The idea behind the “one-at-a-time” approach, as the name itself says, is to change the input 

parameter one at a time while the others are kept at some nominal value. The sensitivity is then 

measured by monitoring the changes in the output which can be done in different ways, e.g. 

partial derivatives or linear regression. Within the stochastic framework presented in this work 
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the sensitivity is measured by monitoring the change in the variance of the output after 

computing the variance for d univariate cases. 

Thus, the impact factor of each input parameter is given by the following formula: 

 𝐼𝑖 = 𝑉𝑖(𝑌) 𝑉(𝑌)⁄  (2.4) 

where: 

𝑿 = [𝑋1, 𝑋2, … , 𝑋𝑘,  … , 𝑋𝑑]   𝑉𝑎𝑟(𝑌|𝑿) = 𝑉(𝑌)  

X = [𝑋𝑖]   𝑉𝑎𝑟(𝑌|𝑿) = 𝑉𝑎𝑟(𝑌|𝑿𝑖) = 𝑉𝑖(𝑌)  

or by simply comparing the variances of the output value for each univariate case. 

Although in this way any change observed in the output is unambiguously prescribed to the 

single variable changed, the approach does not fully explore the input space, since it does not 

take into account the simultaneous variation of input variables. The OAT approach cannot 

detect the presence of interactions between input variables. 

 

2.3.2. ANalysis Of VAriance (ANOVA) based method 

 

The ANOVA is an approach originating from the work of Sobol [18] and it is based on 

variance decomposition within the probabilistic framework. The total variance of a model 

output is decomposed into terms depending on the input factors and their mutual interactions 

[17]: 

 𝑉(𝑌) =  ∑ 𝑉𝑘𝑘 +  ∑ ∑ 𝑉𝑘𝑗𝑗>𝑘 + ⋯+ 𝑉12…𝑑𝑘   (2.5) 

where V(Y) is the output variance when X = [X1, …, Xd], while the other terms are defined as 

follows: 

 

𝑉𝑘   =    𝑉(𝑓𝑘(𝑋𝑘))  =   𝑉𝑋𝑘
[𝐸𝑋~𝑘

(𝑌|𝑋𝑘)] 

𝑉𝑖𝑗 = 𝑉 (𝑓𝑖𝑗(𝑋𝑖, 𝑋𝑗)) 

𝑉 (𝑓𝑖𝑗(𝑋𝑖, 𝑋𝑗)) = 𝑉𝑋𝑖𝑋𝑗
[𝐸𝑋~𝑖𝑗

(𝑌|𝑋𝑖, 𝑋𝑗)] − 𝑉𝑋𝑖
[𝐸𝑋~𝑖

(𝑌|𝑋𝑖)] −  𝑉𝑋𝑖
[𝐸𝑋~𝑗

(𝑌|𝑋𝑖𝑗)]  

(2.6) 

Normalizing the above expression by total variance V(Y) the sensitivity indices are obtained:  
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 1 =  ∑ 𝑆𝑘𝑘 +  ∑ ∑ 𝑆𝑘𝑗𝑗>𝑖 + ⋯+ 𝑆12…𝑑𝑘   (2.7) 

where the first order sensitvity indices measuring the effect of only the k-th random input 

variable, without any interaction with other RVs, is given by the following expression: 

 𝑆𝑘 =  
𝑉𝑋𝑘

[𝐸𝑋~𝑘
(𝑌|𝑋𝑘)]

𝑉(𝑌)
,    𝑘 = 1,… , 𝑑 (2.8) 

The second and high order sensitivity indices, Sij and S12,...d give the infomation about the effect 

that the interaction of two, ore more random input variables has w.r.t. to the output.  

The computational burden may become very prohibitive when all groups of sensitivity indices 

needs to be computed, therefore, very often only first order sensitivity index is computed. In 

order to still obtain the information about the potential significant interactions between the 

varaibles, a total effect sensitivity index is defined as: 

 𝑆𝑇𝑘
=

𝐸𝑋~𝑘
[𝑉𝑋𝑘

(𝑌|𝑋~𝑘)]

𝑉(𝑌)
= 1 −  

𝑉𝑋~𝑘
[𝐸𝑋𝑘

(𝑌|𝑋~𝑘)]

𝑉(𝑌)
 (2.9) 

The total effect index measures the contribution to the output variance of Xk, including all 

variance caused by its interactions, of any order, with any other input variables. 
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3. Generalized polynomial chaos  
 

The theory of polynomial chaos (PC) has been introduced by Norbert Wiener as a non-

sampling based method for uncertainty propagation [19]. In his work, Wiener proposed Hermite 

type of orthogonal polynomials for basis functions to represent Gaussian random process. 

Cameron and Martin proved the convergence of such polynomial expansion in L2 sense for an 

arbitrary stochastic process with finite second moment, i.e. finite variance [20]. The theory 

attracted other researchers dealing with the uncertainty quantification problems in different 

engineering areas, e.g. Ghanem and his co-workers [3].  

However, the Hermite polynomials exhibited difficulties in terms of convergence and 

probability approximations for non-Gaussian problems in some applications. The generalized 

polynomial chaos (gPC) was introduced by Xiu and Karniadakis in [7] to alleviate these 

problems.  They generalized the results of Cameron & Martin to other continuous and discrete 

distributions by using orthogonal polynomials from Wiener-Askey scheme presented in the 

table 3.1.  

The gPC theory was further expanded to other types of basis polynomials like piecewise 

polynomial basis [21], wavelet basis [22] and to a multi-element gPC [23]. Different choice of 

basis functions exhibited good results depending on the given problem. Furthermore, in [24] 

Sudret proposes a Sobol-like sensitivity indices directly from the coefficients of the polynomial 

chaos expansion.  

 

Table 3.1. The Wiener-Askey scheme 

Distribution pdf Polynomials Weights Support (Γ) 

Uniform 1/2 Legendre 1 [−1,1] 

Gaussian 1

√2𝜋
𝑒−

𝑥2

2   Hermite 𝑒−
𝑥2

2   [−∞,∞] 

Exponential 𝑒−𝑥  Laguerre 𝑒−𝑥 [0,∞] 

Beta 
(1−𝑥)𝛼(1−𝑥)𝛽

𝐵(𝛼,𝛽)
  Jacobi (1 − 𝑥)𝛼(1 − 𝑥)𝛽  [−1,1] 
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3.1.Polynomial chaos expansion 

 

According to the gPC theory the output variable Y from Fig. 2.4. is approximated by a 

polynomial expansion [6]: 

 𝑌(𝝃)  ≈  𝑌̂(𝝃) =  ∑𝑌𝑖𝜑𝑖(𝝃)

𝑃

𝑖=0

 (3.1) 

where {φi} is a suitable multivariate basis of polynomial functions and Yi are unknown 

expansion coefficients to be solved. The expansion is truncated at the order of P. 

The polynomial basis functions are orthogonal w.r.t. the inner product in the Hilbert space 

of d input variables ξ = [ξ(1), ξ(2), …, ξ(d)]. More specifically, the set of univariate basis {φi(ξ)} 

belongs to the space of polynomials orthogonal to the measure w(ξ)dξ in space Γ. The measure 

w(ξ) corresponds to a pdf of the variable ξ (table 3.1.). The orthogonality condition for the 

univariate basis is given as follows [6]: 

 〈𝜑𝑖, 𝜑𝑗〉 = ∫ 𝜑𝑖(𝜉)𝜑𝑗(𝜉)𝑤(𝜉)𝑑𝜉
𝛤

= 𝛼𝑖
2𝛿𝑖𝑗 (3.2) 

where δij denotes the Kronecker’s delta function and α is a normalization factor that can be 

determined as: 

  𝛼𝑖
2 = 〈𝜑𝑖, 𝜑𝑖〉 = ∫ 𝜑𝑖

2(𝜉)𝑤(𝜉)𝑑𝜉
𝛤

 (3.3) 

The polynomials are often normalized so that the each factor αi
2 is set to 1. 

Once the maximum degree p of a multivariate basis is chosen it is possible to obtain its 

elements as a product of univariate polynomials in each direction (dimension) ξ(k), k = 1, …,d:  

  𝜑𝒊(𝝃) =  ∏𝜑𝒊
(𝑘)

(𝜉(𝑘))

𝑑

𝑘=1

, ∑ 𝑚𝑘

𝑑

𝑘=1

≤ 𝑝 (3.4) 

where φi(ξ) is a multivariate basis of degree p. The polynom φi
(k)(ξ) is a univariate basis in the 

k-th dimension whose degree is denoted with mk, thus the multidimensional index is given as i 

= [m1, m2, …, md]. The set {φi(ξ)} defines the space of the d-variate orthogonal polynomials 

whose total degree is at most p. The table 3.2. exhibits the series of multivariate functions for d 

= 2 and p chosen to be at most 3. 
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Table 3.2. The set of bivariate (d=2, ξ = [ξ(1) , ξ(2)]) basis functions for the maximum degree 

of multivariate polynomial p = 3 

i = [m1, m2] i p Multivariate polynomal: φi(ξ) 

[0, 0] 1 0 𝜑0(𝜉
(1)) ∙ 𝜑0(𝜉

(2)) 

[1, 0] 

[0, 1] 

2 

3 
1 

𝜑1(𝜉
(1)) ∙ 𝜑0(𝜉

(2)) 

𝜑0(𝜉
(1)) ∙ 𝜑1(𝜉

(2)) 

[2, 0] 

[1, 1] 

[0, 2] 

4 

5 

6 

2 

𝜑2(𝜉
(1)) ∙ 𝜑0(𝜉

(2)) 

𝜑1(𝜉
(1)) ∙ 𝜑1(𝜉

(2)) 

𝜑0(𝜉
(1)) ∙ 𝜑2(𝜉

(2)) 

[3, 0] 

[2, 1] 

[1, 2] 

[0, 3] 

7 

8 

9 

10 

3 

𝜑3(𝜉
(1)) ∙ 𝜑1(𝜉

(2)) 

𝜑2(𝜉
(1)) ∙ 𝜑1(𝜉

(2)) 

𝜑1(𝜉
(1)) ∙ 𝜑2(𝜉

(2)) 

𝜑0(𝜉
(1)) ∙ 𝜑3(𝜉

(2)) 

 

The expansion of the output Y given in (3.1) is truncated at the value P. In practice the value 

of P depends on the total polynomial degree p and number of input random variables d [6]: 

  (𝑃 + 1) =  (
𝑑 + 𝑝

𝑝
) =  

(𝑝 + 𝑑)!

𝑝! 𝑑!
 (3.5) 

The orthogonality property from eq. (3.2.) extends to the multivariate basis: 

 

〈𝜑𝑖, 𝜑𝑗〉 = ∫ 𝜑𝑖(𝝃)𝜑𝑗(𝝃)𝑤(𝝃)𝑑𝝃
𝛤

  

= ∏ ∫ 𝜑𝒊
(𝑘)

(𝜉(𝑘)) ∙  𝜑𝒋
(𝑘)

(𝜉(𝑘))𝑤(𝜉(𝑘))
𝛤

𝑑
𝑘=1 𝑑𝜉(𝑘) = ∏ 〈𝜑𝑖

(𝑘)
, 𝜑𝑗

(𝑘)〉𝑑
𝑘=1   

(3.6) 

The former expression differs from zero only if i(k) = j(k), k = 1,…, d which happens when the 

two multivariate polynomials are identical. 

For the purpose of illustration, the output Y will be approximated by using Hermite 

polynomial basis. The Hermite polynomials up to degree p = 3 are given as [6]: 

  𝐻0(𝜉) = 1  𝐻1(𝜉) = 𝜉  𝐻2(𝜉) =  
𝜉2−1

√2
   𝐻3(𝜉) =

𝜉3−3𝜉

√6
  (3.7) 

where polynomial basis φi is denoted as Hi in the case of Hermitian basis type. 
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Suppose we have a bivariate case, d = 2. The truncation based on d = 2 and p = 3 leads to P = 

9. Thus the polynomial approximation for the output Y (ξ(1) , ξ(2)) is as follows: 

 

 𝑌̂(𝜉(1), 𝜉(2)) =  𝑌0 + 𝑌1 ∙ 𝜉(1) + 𝑌2 ∙ 𝜉(2) + 𝑌3 ∙
(𝜉(1))

2
−1

√2
+ 𝑌4 ∙ 𝜉(1) ∙ 𝜉(2)  

+ 𝑌5 ∙
(𝜉(2))

2
−1

√2
+ 𝑌6 ∙

(𝜉(1))
3
−3𝜉(1)

√6
+ 𝑌7 ∙

(𝜉(1))
3
−3𝜉(2)

√6
  

+𝑌8 ∙
(𝜉(2))

3
−3𝜉(1)

√6
+ 𝑌9 ∙

(𝜉(2))
3
−3𝜉(2)

√6
  

(3.8) 

Given that the polynomials from Wiener-Askey scheme (table 3.1.) form a complete basis 

in the Hilbert space determined by the corresponding support Γ, the expansion is the best 

approximation in the linear polynomial space spanned by {φi}. It converges in the L2 sense and 

with the increase of p [6].  

 

3.2.Computation of the coefficients 

 

The coefficients Yi in the expansion given by the expression (3.1.) can be computed by 

means of orthogonal projection onto the polynomial basis as follows: 

 𝑌𝑖 =
〈𝑌, 𝜑𝑖〉

〈𝜑𝑖, 𝜑𝑖〉
=

∫ 𝑌(𝝃)𝜑𝑖(𝝃)𝑤(𝝃)𝑑𝝃
𝛤

𝛼𝑖
2  (3.5) 

The integral in (3.5) contains the unknown quantity of interest Y, hence it is computed 

numerically by means of either collocation or Galerkin methods [6]. The Galerkin approach, 

also known as stochastic Galerkin method (SG) is often used in case of relatively simple 

governing equations [6]. The collocation based approaches for computing the expansion 

coefficients are used when the governining equations take more complicated forms. The 

combination of the gPC and collocation approaches is known as the pseudospectral approach 

[25]. 

 

 

3.3.Statistical information  

 

The polynomial expansion (3.1.) is an analytical relationship between the output Y and the 

random input parameters ξ = [ξ(1), ξ(2), …, ξ(d)] thus providing a sort of a surrogate for the 

original deterministic model. With P large enough the polynomial representation is quite 

accurate and the statistical information can be obtained. The property of orthogonality in eq. 
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(3.2) yields that every polynomial is orthogonal to the one with the degree 0, i.e. φ0(ξ) = 1. 

Consequently, the expectation of every other polynomial whose degree mk ≠ 0 is zero. Thus, by 

using the property of orthogonality and following the definitions from the statistics for the 

stochastic moments, the mean and the variance are given as follows [6]. 

- The stochastic mean or expected value: 

 

𝐸{𝑌(𝝃)} ≈ 𝐸{𝑌̂(𝝃)} = ∫ 𝑌̂(𝝃)𝑤(𝝃)𝑑𝝃
𝛤

=  

∑ 𝑌𝑖 ∫ 𝜑𝑖(𝝃)𝑤(𝝃)𝑑𝝃
𝛤

𝑃
𝑖=0 ≡ ∑ 𝑌𝑖

1

𝛼0
〈𝜑𝑖, 𝜑0〉

𝑃
𝑖=0 = 𝑌0𝛼0  

(3.6) 

- The variance: 

 

𝑉𝑎𝑟{𝑌(𝝃)} ≈ 𝑉𝑎𝑟{𝑌̂(𝝃)} = ∫ 𝑌̂2(𝝃)𝑤(𝝃)𝑑𝝃
𝛤

− 𝐸{𝑌̂(𝝃)}
2
=  

∑ ∑ 𝑌𝑖𝑌𝑗
𝑃
𝑗=0 ∫ 𝜑𝑖(𝝃)𝜑𝑗(𝝃)𝑤(𝝃)𝑑𝝃

𝛤
𝑃
𝑖=0 − 𝑌0

2𝛼0
2  

= ∑ ∑ 𝑌𝑖𝑌𝑗
𝑃
𝑗=0 〈𝜑𝑖, 𝜑𝑗〉

𝑃
𝑖=0 − 𝑌0

2𝛼0
2 = ∑ 𝑌𝑖

2𝛼𝑖
2𝑃

𝑖=0 − 𝑌0
2𝛼0

2 = ∑ 𝑌𝑖
2𝛼𝑖

2𝑃
𝑖=1   

(3.7) 

- The calculation of pdf: 

In case of the calculation of pdf the polynomial expansion given by (3.1) can be treated by 

Monte Carlo sampling as described in 2.2.1.  

 

3.4.Application example 

 

For the sake of completeness the main PCE properties will be illustrated through a very 

simple example. We choose a Gaussian random variable X with mean μ = 5 and standard 

deviation σ = 0.7, i.e. X ~ N (5,0.7). Furthermore, we define the output Y as a random variable 

depending on the X such that: 

 𝑌 = 𝑀(𝑋) = 2𝑋2 − 3𝑋 − 4 (3.8) 

Then, the random variable X is expressed in terms of the normalized random variable ξ ~ N 

(0,1) as follows: 

 𝑋 = 5 + 0.7𝜉 (3.9) 

By inserting (3.8.) into (3.7.) the output Y can be expressed as the following polynomial: 

 𝑌(𝜉) = 0.98𝜉2 + 11.9𝜉 + 31 (3.10) 
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Moreover, the above expression may be written as a second-order Hermite expansion: 

 
𝑌(𝜉) = 31.98 + 11.9𝜉 + 1.39 ∙ (

𝜉2−1

√2
)  

𝑌(𝜉) = 31.98 ∙ 𝐻0(𝜉) + 11.9𝐻1(𝜉) + 1.39𝐻2(𝜉)  

(3.11) 

According to (3.6.) and (3.7.) the results for the mean and variance are: E{Y} = 0! ∙ 31.98 and 

Var(Y) = 1! ∙ 11.92 + 2! ∙1.392 = 143.54, respectively. The MCM results for the mean and the 

variance with NMC = 10.000.000 samples are μMC = 31.98 and σ2
MC = 143.48. 
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4. Stochastic collocation method 
 

Similarly to the gPC theory, the fundamental principle of stochastic collocation (SC) lies in 

the polynomial approximation of the considered output Y for d random input parameters [6]. 

The expansion coefficients for the stochastic collocation are actually the deterministic outputs 

of the considered model, calculated at Nsc predetermined input points also called the collocation 

points. However, not all classical sampling methods are automatically labelled as stochastic 

collocation. Instead, the term “stochastic collocation” is reserved for the type of collocation 

methods that result in a strong convergence, e.g. mean-square convergence, to the true solution 

[26]. This is typically achieved by utilizing the classical multivariate approximation theory to 

strategically locate the collocation nodes in order to construct a polynomial approximation to 

the solution. 

Hence, the fundamental principle of the SC method lies in the polynomial approximation 

of the considered output Y over the d dimensional input stochastic space in which Nsc samples 

are previously selected [26]: 

 𝑌̂(𝝃) =  ∑𝐿𝑖(𝝃) ∙ 𝑌(𝑖)

𝑁

𝑖=1

 (4.1) 

where Li(ξ) is basis function and Y(i) is the output realization for the i-th input point ξ(i). Note 

that the transformation of the vector of random input variables to a vector of standardized 

random input variables is assumed (X(i)=[X1
(i), ..., Xd

(i)] into ξ(i)=[ ξ1
(i), ..., ξd

(i)]).  

There are two issues to be considered: how to construct the basis functions Li(ξ) and how 

to choose interpolation points Y(i) = M[X(i)]. Again, different approaches exist to answer these 

challenges. The basis functions may be of Lagrange type [8], wavelet basis [27] or piecewise 

constant [28] while the choice of the collocation points may follow different quadrature [8] and 

cubature rules [29].  

Furthermore, some effort has been done regarding the coupling of the uncertainty 

quantification and sensitivity analysis in the same stochastic collocation framework. Buzzad 

and Xiu exploited the nature of sparse grid interpolation and cubature methods of Smolyak 

together with combinatorial analysis to give a computationally efficient method for computing 

the global sensitivity values of Sobol' [30]. Furthermore, Tang and Iaccarino showed the 

accuracy and efficiency of Sobol like indices computed by using the SC method in [31]. SC 

methodology has also been used for inverse problems under the Bayesian approach. The aim 
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of inverse problems is to reduce the uncertainty of the input parameters in order to make 

predictions, and even to devise control strategies based on the predictions [32]. The Bayesian 

inference in the SC framework has been reported in [33]- [35].  

 

4.1.Computation of stochastic moments 

 

To address the questions pertaining to the choice of basis function and collocation points, it 

is useful to firstly recall the definitions of stochastic moments. According to the statistics’ 

theory the first two moments are defined as follows:  

 𝜇(𝑌(𝝃)) = ∫ 𝑌(𝝃)𝑝(𝝃)𝑑𝝃
𝛤

  (4.2.a) 

 

 

𝑉𝑎𝑟(𝑌) = E[(𝑌 − 𝐸[𝑌])2] =  𝐸[𝑌2 − 2𝑌𝐸[𝑌] +  𝐸[𝑌]2]  

= E[𝑌2] − 2𝐸[𝑌]𝐸[𝑌] +  𝐸[𝑌]2 = 𝐸[𝑌2] − 𝐸[𝑌]2  

𝑉𝑎𝑟(𝑌(𝝃)) = ∫ (𝑌(𝝃) − 𝜇(𝑌(𝝃)))
2

𝑝(𝝃)𝑑𝝃
𝛤

  

(4.2.b) 

where p(ξ) is the joint probability density function defined as follows: 

 𝑝(𝝃) = ∏ 𝑝(𝜉𝑘)
𝑑
𝑘=1   (4.3) 

Inserting (4.1.) into (4.2) it follows: 

 𝜇(𝑌(𝝃)) ≈ ∫ ∑ 𝐿𝑖(𝝃) ∙ 𝑌(𝑖)𝑁
𝑖=1 𝑝(𝝃)𝑑𝝃

𝛤
= ∑ 𝑌(𝑖)𝑁

𝑖=1 ∫ 𝐿𝑖(𝝃) ∙ 𝑝(𝝃)𝑑𝝃
𝛤

  (4.4.a) 

and 

 

𝑉𝑎𝑟(𝑌(𝝃)) = ∫ (𝑌(𝝃) − 𝜇(𝑌(𝝃)))
2

𝑝(𝝃)𝑑𝝃
Γ

  

𝑉𝑎𝑟(𝑌(𝝃)) = ∑ (𝑌(𝑖))
2𝑁

𝑖=1 ∫ 𝐿𝑖(𝝃) ∙ 𝑝(𝝃)𝑑𝝃
𝛤

− 𝜇 (𝑌̂(𝝃))
2

  

(4.4.b) 

 

Given that the basis functions Li(ξ) and the joint pdf p(ξ) are known, the integral over the space 

Γ can be precomputed and its value is called the weight wi: 

 𝑤𝑖 = ∫𝐿𝑖(𝝃)𝑝(𝝃)𝑑𝝃
Γ

 (4.6) 

Consequently, the stochastic moments can be expressed in a very simple form. The 

expressions for the first four stochastic moments are given in table 4.1. The higher orders of 

stochastic moments are computed accordingly [26].  
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Table 4.1. The expressions for the first four stochastic moments  

Stochastic moment Expression: 

1 mean 𝜇(𝑌(𝝃)) ≈ ∑ 𝑌(𝑖)𝑁
𝑖=1 𝑤𝑖  

2 variance 𝜎𝑌
2 = 𝑉𝑎𝑟(𝑌) ≈ ∑ (𝑌(𝑖))

2𝑁
𝑖=1 𝑤𝑖 − 𝜇2  

3 skewness 𝑠𝑘𝑒𝑤(𝑌) ≈
∑ (𝑌(𝑖))

3𝑁
𝑖=1 𝑤𝑖 − 3𝜇𝜎𝑌

2 − 𝜇3

𝜎𝑌
3  

4 kurtosis 𝑘𝑢𝑟𝑡(𝑌) ≈
∑ (𝑌(𝑖))

4𝑁
𝑖=1 𝑤𝑖 − 4𝜇 ∙ 𝑠𝑘𝑒𝑤 ∙ 𝜎𝑌

3 − 6𝜇2 ∙ 𝜎𝑌
2 − 𝜇4

𝜎𝑌
4  

 

4.2.Interpolation approaches 

 

The most popular approach to choosing the basis function is by following the well-

developed and extensive classical theory of univariate Lagrange polynomial interpolation [26]. 

Hence, for the univariate case, i.e. d = 1 & ξ(i)=[ ξ1
(i)]  and total of mk collocation points in the 

k-th dimension the Lagrange basis function is given as: 

  𝑙𝑖(𝜉𝒌) = ∏
𝜉𝒌−𝜉𝒌

(𝒋)

𝜉𝑘
(𝒊)

−𝜉𝒌
(𝒋)

𝑚𝑘

𝑗=0, 𝑗≠𝑖
    𝑖 = 1,… ,𝑚𝑘  (4.7) 

with the property 

  𝑙𝑖(𝜉𝒋) = 𝛿𝑖𝑗      (4.8) 

where 𝛿ij denotes Kronecker symbol. 

The alternative approach is to use piecewise linear functions defined as follows: 

 𝑙(𝜉𝑘)𝑗
(𝑢)

=  {
1 − (𝑚𝑘

(𝑢)
− 1) ∙ |𝜉𝑘 − 𝜉𝑘

(𝑢)

𝑗
| ,   𝑖𝑓 |𝜉𝑘 − 𝜉𝑘

(𝑢)

𝑗
| <

1

𝑚𝑘
(𝑢)

−1
 

0                                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (4.9) 

The total number of  mk collocation points in the k-th dimension is defined as: 

 𝑚𝑘
(𝑢)

=  {
1,                    𝑓𝑜𝑟  𝑢 = 1

2𝑢−1 + 1,     𝑓𝑜𝑟 𝑢 > 1
   (4.10) 

where u is the level of supporting point. 
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Lagrange polynomials have the character of locally global basis functions, while piecewise 

linear basis functions are used when it is important to capture the discontinuous issues in 

stochastic solutions. Since the manipulation of Lagrange or other type of basis function may be 

a cumbersome procedure, a pseudo-spectral collocation approach is proposed in [25] and it is 

considered as a part of gPC theory described briefly in section 3. 

 

4.3.Collocation points selection 

 

The choice of the collocation points is essential part of any collocation based method. The 

aim of stochastic collocation method is to approximate the integral in the equation (4.6.) as 

accurate as possible: 

 𝑤𝑖 = ∫𝐿𝑖(𝝃)𝑝(𝝃)𝑑𝝃
Γ

  

The weights wi are computed numerically. However, as long as the stochastic dimension is 

equal to 1 (d = 1) the points selection is straightforward. There are numerous numerical studies 

proposing wide range of quadrature rules to deal with the 1-dimensional integral evaluation and 

the optimal choice is Gauss quadrature [6]. Depending on the pdf of the input RV one can 

choose between different Gauss quadrature rules, e.g. Gauss-Hermite, Gauss-Legendre or 

Gauss-Jacobi for variables with normal, uniform or beta distributions, respectively [6]. It is 

worth noting that this corresponds to the Wiener-Askey scheme (table 3.1).  

E.g. for the variable X = 5, uniformly distributed in the interval U = [2, 8], the selection of 

collocation points follows Gauss-Legendre quadrature rule which belong to interval [-1, 1]. In 

order to estimate the stochastic moments given by expressions in table 3.1., the mathematical 

model will be run N times, where N corresponds to the number of collocation points. The 

accuracy is increased with the selected number of collocation points needed for the computation 

of the integral (4.6). The Gauss-Legendre quadrature points are given in table 4.2. for odd values 

of N along with the corresponding collocation points of variable X and their respective weights. 

The basis functions used in this example are of Lagrange type. 
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Table 4.2. Collocation points for random variable uniformly distributed in range [2, 8] 

N ξ = [-1, 1] X = [2, 8] 𝒘𝒊 = ∫𝑳𝒊(𝝃)𝒑(𝝃)𝒅𝝃
𝚪

 

3 

-0.7746 

0 

0.7746 

2.6762 

5.0000 

7.3238 

0.2778 

0.4444 

0.2778 

5 

-0.9062 

-0.5385 

0 

0.5385 

0.9062 

2.2815 

3.3846 

5.0000 

6.6154 

7.7185 

0.1185 

0.2393 

0.2844 

0.2393 

0.1185 

 

It is worth noting that the computation of weights does not depend on the boundary values 

of variable X, therefore, they can be precomputed and stored for further use. 

Other integration rules may be used as well. Very often instead of Gauss quadrature a 

Clenshaw-Curtis quadrature rule is used, especially when sparse grid multi-variate interpolation 

is employed [26] which will be further discussed in the following subsections. Additionally, it 

is a practice to use equidistant points when the interpolation is done by using the piecewise 

linear basis funcitons.  

The real challenge, however, is a numerical computation of multi-dimensional integral for 

d > 1, especially for d >> 1. For extremely large dimensions in realistic scenarios the Monte 

Carlo method and its variants are still the only applicable approaches. However, if the 

dimension is not too large there are quicker approaches which are also used in the framework 

of SC method. 

 

4.3.1. Tensor product 

 

The most natural approach to multi-dimensional integration is the tensor product of 1-

dimensional quadrature rules which leads to relatively simple generalization of integration 

properties from 1-dimensional to d-dimensional case [26]. The idea of tensor product has been 

introduced in [8], [36] and its errors are analysed in [37]. 

The multi-dimensional integral (4.6.) is thus given as: 

 𝑤𝑖 = ∫ 𝑙(𝜉1
(𝑖))𝑝(𝜉1)𝑑𝜉

𝛤1
 ∙ ∫ 𝑙(𝜉2

(𝑖))𝑝(𝜉2)𝜉𝛤2
∙  …  ∙ ∫ 𝑙(𝜉𝑑

(𝑖)
)𝑝(𝜉𝑑)𝑑𝜉

𝛤𝑑
  (4.11) 
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𝑤𝑖 = 𝑤1(𝑗)

(𝑖)
∙ 𝑤2(𝑗)

(𝑖) ∙  …  ∙ 𝑤𝑑(𝑗)

(𝑖)         𝑖 = 1,… ,𝑁𝑆𝐶  

The multivariate basis functions Li(ξ) from eq. (4.1.) are also formed by means of a tensor 

product of a univariate basis functions in each dimension: 

 𝐿𝑖(𝝃) = 𝑙(𝜉1
(𝑖)) ⊗ 𝑙(𝜉2

(𝑖)) ⊗ …⊗ 𝑙(𝜉𝑑
(𝑖)

)  (4.12) 

The total number of simulation points is thus: 

 𝑁𝑆𝐶 = ∏ 𝑚𝑘
𝑑
𝑘=1   (4.13) 

In most of the applications the number of collocation points in each dimension is equal, thus 

NSC = mk^d. Obviously, the number of simulation points grows exponentially with the number 

of input RVs, therefore the tensor product is mostly used at lower dimensions. The generally 

accepted limitation is d ≤ 5 [26]. 

 

4.3.2. Sparse grids 

 

The idea behind the sparse grids is to alleviate the problem of a “curse of dimensionality” 

present in the tensor product by using a sparse instead of a tensorized grid of points. The 

approach was first proposed by Smolyak in [38] and it has been widely used and improved ever 

since in the context of multivariate integration and interpolation [39], [40]. The sparse grids 

were introduced to stochastic collocation framework in [26]. 

The sparse grid represents the subset of the full tensor product grid. The basic idea behind 

the sparse grid is an optimal linear approximation of the low level tensor products such that an 

integration property for d = 1 is preserved as much as possible for d > 1 [26]. Consequently, 

only those products with the relatively small number of points are used thus reducing the total 

number of simulation points. Lots of prominent researchers investigated different algorithms 

for sparse grid construction and perhaps the most famous works are those of Griebel and Zenger 

[41], [42]. 

The classical sparse-grid approach applied to the construction of multi-variate basis 

function Li(ξ) can be expressed in the following way [26]: 

𝐿𝑖(𝝃) = ∑ (−1)𝑞+𝒅−|ℎ⃗⃗ | ∙ ( 𝒅−1

𝑞+𝒅−|ℎ⃗⃗ |
) ∙ (𝑙(𝜉𝟏

(𝑖)
, ℎ𝟏 ) ⊗ …⊗ 𝑙(𝜉𝑑

(𝑖)
, ℎ𝒅 ))𝑞+1≤|ℎ⃗⃗ |≤𝑞+𝒅   (4.14.) 
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where q is a sparseness parameter or the sparseness level and h denotes the depth coordinate 

for each dimension: k= 1, …, d. The vector |h| = h1 + h2 + … hd  lists the levels of the rules 

used by each component. The algorithms for a sparse grid construction may be found in [41]. 

It is worth noting that there is no mandatory choice of the one-dimensional quadrature rules 

used in the sparse grid algorithm. However, in order to reuse the collocation points from lower 

levels h in the higher levels as well, it is a good practice to use those quadrature rules that result 

in a set of nested points. As an example, Fig. 4.3. illustrates the sequence of Gauss-Hermite 

collocation points and the sequence of Clenshaw-Curtis points computed as the extrema of the 

Chebyshev polynomials. As it is obvious from the figure, at the individual level h number of 

Gauss rule results in less number of points w.r.t. Clenshaw-Curtis rule. Nevertheless, due to the 

nesting property of Clenshaw-Curtis set of points, the total number of 17 points is less than total 

of 21 Gauss points. 

 

Figure 4.3.  The Clenshaw-Curtis (left) vs. Gauss-Hermite (right) sequence of points for 5 

levels of interpolation  

For the sake of completeness a simple example with d = 3 random input variables uniformly 

distributed in the interval [-1, 1] is depicted in Fig. 4.4. The grids of points are presented for 

MC simulation and both for tensor and sparse grid of points. The sparseness level is set to q = 

2 and Clenshaw-Curtis quadrature was used, while Gauss-Legendre quadrature was used with 

the tensor product. The total number of points for the different techniques is NMC = 1000, NSC-

SG = 69 and NSC = 343, respectively. 
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Figure 4.4.  The 3-dimensional grid of points for MC, SC-tensor grid and SC-sparse grid 

techniques (left to right) 

The dependence of the total number of simulation points of the sparse grid products on the 

dimension is much weaker than in case of tensor product with the reduction from NSC = mk^d 

to approximately NSC-SG = (2*mk)^d / d!  simulation points. The sparse grid approximation is 

accurate for d > 5. Some of the first sparse grid SC computations in [26] went to 50-dimensional 

stochastic space.  

 

4.3.3. Stroud’s cubature rules 

 

The integration rules for the evaluation of multidimensional integrals, also known as 

cubature rules, are a part of an active research. Cools has published a collection of available 

cubature formulas for the approximation of multivariate integrals over some standard regions 

in [43]. As it is the case for every rule for numerical integration, the idea is to represent the 

multidimensional integral as a sum of products of weights ωi and the function evaluations at a 

carefully chosen points ξ(i): 

 ∫ 𝑓(𝝃)𝑑𝝃
[−1,1]𝑑

= ∑ 𝜔𝑖𝑓(𝝃(𝑖))𝑀
𝑖=1   (4.16) 

where [-1,1]d is the hypercube space. 

A large collection of cubature rules can be a good option for SC technique and the most used 

ones are the Stroud’s cubatures [26]. Stroud proposed two set of cubature points, one accurate 

for multiple integrals of polynomials of degree 2 and the other for polynomials of degree 3, the 

Stroud-2 and Stroud-3 formulas, respectively [44].  

The Stroud-2 formula is given as follows: 
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𝜉2𝑟−1

(𝑖)
= √

2

3
cos (

2𝑟(𝑖−1)𝜋

𝑑+1
)  &   𝜉2𝑟

(𝑖)
= √

2

3
sin (

2𝑟(𝑖−1)𝜋

𝑑+1
),   𝜔𝑖 = 

1

𝑑+1
   

𝑟 = 1, 2, … , 𝑓𝑙𝑜𝑜𝑟 (
𝑑

2
)  

(4.17) 

provided that d is an even number. If number d is odd, the location of the i-th node for the d-th 

dimension is given by the following expression: 

 𝜉𝑑
(𝑖)

= 
(−1)𝑖−1

√3
  (4.18) 

while the formula for weights ωi remains the same. 

The Stroud-3 formula is defined with: 

 
𝜉2𝑟−1

(𝑖)
= √

2

3
cos (

(2𝑟−1)𝑖𝜋

𝑑
)   &  𝜉2𝑟

(𝑖) = √
2

3
sin (

(2𝑟−1)𝑖𝜋

𝑑+1
) , 𝜔𝑖 = 

1

2𝑑
  

𝑟 = 1, 2, … , 𝑓𝑙𝑜𝑜𝑟 (
𝑑

2
)  

(4.19) 

again with the additional expression for the i-th node along the last dimension:  

 𝜉𝑑
(𝑖)

= 
(−1)𝑖

√3
  (4.20) 

The total number of collocation points given by Stroud-2 rule is M = (d + 1) while in case of 

Stroud-3 rule M = 2*d. The number M is fixed, it depends only on the dimensionality of a 

stochastic model and it is a minimal number of points necessary for the desired integration 

accuracy of a polynomials with the corresponding degree. It is worth noting that Stroud rules 

present a good choice when the demand on accuracy is not very strict in case of high-

dimensional stochastic spaces (d >> 1) [26]. 
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5. Stochastic reduced order model 
 

In the area of stochastic computations the never ending aspiration is to develop a model that 

has a computational cost as low as possible at the same time preserving the accuracy of results. 

In this spirit, much effort has been invested in the so called reduced models. In particular, the 

aim is to develop a stochastic model that can deal with the existing deterministic systems in a 

non-intrusive manner with as few sampling as possible. One of the new techniques that has 

been proposed is the stochastic reduced order model (SROM).  

Stochastic reduced order model - SROM, is a new technique of solving stochastic problems 

that can be described in the following way: SROM is a reduced representation of the input 

variable constructed with the goal to preserve its statistical properties [12]. A brief overview of 

the progress in SROM development is presented in this section. The main idea behind the 

SROM is introduced, some proposed algorithms are outlined and basic examples are provided. 

 

5.1.Generalities on SROM 

 

A SROM of a random variable X is a simple vector𝑋̃ with finite number of samples that 

approximates the variable in such a way that X and 𝑋̃ ̃ have similar statistical properties. The 

SROM is completely defined with its samples and the assigned probability to each sample. This 

property makes it different from a Monte Carlo approach in which a large set of equally likely 

samples is generated [12].  

SROM is defined by: 

 𝑋̃𝑆𝑅𝑂𝑀 = 𝑋̃ =  {(𝑥̃𝑘, 𝑝𝑘)},        1 ≤ 𝑘 ≤ 𝑚 (5.1) 

with constraints: 

 ∑ 𝑝𝑘
𝑚
𝑘=1 = 1,       𝑝𝑘 ≥ 0 ,    1 ≤ 𝑘 ≤ 𝑚  (5.2) 

where 𝑥̃𝑘 are sample values, and pk is a probability assigned to each value. The cardinal number 

m is determined apriori and it represents the size of a SROM. Its value depends on the 

computational requirements for a particular application. 

As it is reported in [45] any m samples of variable X along with prescribed probabilities that 

satisfy the constraints make a SROM for X. Still, these representations of X are most likely 

unsatisfactory since one needs to make sure that the probability laws of X and 𝑋̃ are as similar 
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as possible. The general way to assure the optimal representation is to minimize the discrepancy 

between statistical properties of X and 𝑋̃ by solving the optimization problem. This is the core 

of SROM construction and it is also the only overhead to deal with when applying SROM to a 

problem. Several optimization techniques have been proposed in various papers and they are 

briefly outlined in the following subsection. 

Although various metrics can be used to measure the discrepancy between X and 𝑋̃ ̃, the 

most common way is to account for the difference between their marginal distributions, 

marginal moments up to order six and correlation function. All of this is possible if the statistical 

properties of X are well known. On the contrary, if this is not the case the alternative 

optimization problem must be formulated [12]. 

Hence, let's assume that X is a d dimensional random variable whose statistical properties 

are completely known: X=[X1, X2, …, Xd]. By statistical properties the following is assumed: 

marginal distribution, moments of order r, and correlation matrix: 

 𝐹𝑖(𝜗) = 𝑃(𝑋𝑖 ≤  𝜗) (5.3) 

 𝜇𝑖(𝑟) = 𝐸(𝑋𝑖
𝑟) (5.4) 

 𝒓 = 𝐸[𝑿𝑿𝑻] (5.5) 

where i = 1, …, d. 

The marginal distribution (cumulative density function, cdf), moments of order r, and 

correlation matrix are defined for SROM 𝑋̃ in the following way: 

 𝐹̃𝑖(𝜗) = 𝑃(𝑋̃𝑖 ≤  𝜗) =  ∑ 𝑝𝑘𝑰(𝑥̃𝑘,𝑖 ≤ 𝜗)𝑚
𝑘=1   (5.6) 

 𝜇𝑖(𝑟) = 𝐸(𝑋̃𝑖
𝑟) =  ∑ 𝑝𝑘(𝑥̃𝑘,𝑖)

𝑟𝑚
𝑘=1   (5.7) 

 𝒓̃𝑖,𝑗 = 𝐸[𝑿̃𝑖𝑿̃𝑗] =  ∑ 𝑝𝑘𝑥̃𝑘,𝑖𝑥̃𝑘,𝑗
𝑚
𝑘=1   (5.8) 

where i = 1, …, d and I(A) = 1 if A true, 0 if A false as an indicator function.  

The optimization function that minimizes the discrepancy between statistical properties is 

defined as: 

 𝑓 =  ∑ 𝛼𝑢 𝑒𝑢
3
𝑢=1   (5.9) 

where eu are measures for discrepancies between the marginal distributions, moments up to 

order 𝑟̃, and correlation matrices, respectively: 
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 𝑒1(𝒙̃, 𝒑) =  ∑ ∑ [𝐹̃𝑖(𝑥̃𝑘,𝑖) − 𝐹𝑖(𝑥̃𝑘,𝑖)]
2𝑚

𝑘=1
𝑑
𝑖=1   (5.10) 

 𝑒2(𝒙̃, 𝒑) =  ∑ ∑ [𝜇𝑖(𝑟) − 𝜇𝑖(𝑟)]
2𝑟̃

𝑟=1
𝑑
𝑖=1   (5.11) 

 𝑒3(𝒙̃, 𝒑) = ∑ [𝒓̃𝑖,𝑗 − 𝒓𝑖,𝑗]
2

𝑖,𝑗=1…𝑑   (5.12) 

The coefficients αu ≥ 0, u = 1, 2, 3 are weighting factors whose purpose is to make sure that 

each of the measures has the same order of magnitude, or to emphasize some of them if 

necessary. 

The function f is then optimized to obtain the optimal SROM representation for X: 

 𝑋̃𝑆𝑅𝑂𝑀 = 𝑋̃ =  {(𝑥̃𝑘
𝑜𝑝𝑡, 𝑝𝑘

𝑜𝑝𝑡)},        1 ≤ 𝑘 ≤ 𝑚 (5.13) 

 

5.2.Optimization procedures 

 

In general, the optimal SROM can be constructed in three ways. Namely, the optimization 

can be done in a way that firstly samples are chosen in a somehow heuristic way and then the 

function f is optimized only over p: 

 𝑋̃  ∶= argmin
 𝒑

𝑓 (5.14) 

This has been proposed in [12] and [46] (Section A.3) and used in [47]. The proposed 

algorithms are pattern classification, integer optimization and dependent thinning.  Further 

details on each of the algorithms can be found in [12] and in references therein. 

The second approach to optimization is completely heuristic, which is also the simplest one. 

It relies on the pattern classification algorithm that uses Voronoi tessellations to extract the 

samples as well as to calculate the probabilities without tackling the optimization problem in 

eq. (5.9). This approach is proposed in [46] (Section A.3).  

Finally, the most optimal, but also the most complex way is to optimize the function f from 

eq. (5.9.) jointly over both {𝒙}̃ and p.  

 𝑋̃  ∶= argmin
{𝒙}̃,𝒑

𝑓 (5.15) 

This approach has been reported in [48] and later used in [49] and [50]. 
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5.3.Uncertainty propagation by SROM 

 

This section outlines the two main ways of SROM uncertainty propagation to the output: 

“pure” SROM and Extended SROM (ESROM) [46] (Section A. 3 and A. 4). The first approach 

is based on piecewise constant approximation of the output of interest, while the second 

approach is based on piecewise linear approximation of the output. In addition, the output of 

interest can be approximated also by a piecewise quadratic approximation [51].  

In the following text the output value is noted with Y, the corresponding SROM output 

construction with  𝑌̃ and deterministic solver with M. 

 

5.3.1. “Pure” SROM mapping 

 

The main feature of this method is its simplicity. The input value is represented with SROM 

value-probability pairs 𝑋̃ =  {(𝑥̃𝑘, 𝑝𝑘)}. Basically, deterministic solver is fed with the sample-

probability pairs of the SROM input 𝑋̃ and the outcome is the sample-probability pair of the 

output value 𝑌̃ =  {(𝑦̃𝑘, 𝑝𝑘)}. The probabilities of the input are the same as for the output, since 

𝑦̃𝑘 happens only if the 𝑥̃𝑘 is the current input. The mapping X = M(Y) can be formulated as the 

piecewise constant output function as follows: 

 𝑌̃ =  ∑ 𝑦̃𝑘 𝟏(𝑋 ∈  𝐶𝑘)
𝑚
𝑘=1   (5.16) 

where 𝐶𝑘 is a measurable partition of the 𝑋 domain such that 𝑝𝑘 = 𝑃(𝑋−1(𝐶𝑘)), 𝑘 = 1…𝑚. 

Finally, the statistics of the output 𝑌 are approximated by using the SROM 𝑌̃ and equations 

(5.6.)-(5.8.), which is step 3 on Fig.5.1. The scheme for the UP via SROM is depicted in the 

Fig. 5.1.  

 

Figure 5.1.  The “pure” SROM uncertainty propagation 
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5.3.2. Extended SROM mapping (ESROM) 

 

Under assumption that mapping is sufficiently smooth the Extended SROM (ESROM) uses 

piecewise linear functions to approximate the X = M(Y). This approach relies on the pattern 

classification and Voronoi tessellations for constructing the  𝑋̃ =  {(𝑥̃𝑘, 𝑝𝑘)}. Once the input 

SROM has been constructed, m deterministic solutions 𝑦̃𝑘 are calculated as presented in Fig. 

5.1. In addition, gradients of the output value with the respect to the coordinates of the input X 

have to be calculated:  

 ∇𝑦̃𝑘(∙) =  [
𝜕𝑦̃𝑘(∙)

𝜕𝑥1
, … ,

𝜕𝑦̃𝑘(∙)

𝜕𝑥𝑑
 ]       1 ≤ 𝑘 ≤ 𝑚,   (5.17) 

where 𝑑 is the dimension, i.e. number of coordinates of the input variable. 

Deterministic solutions {𝑦̃𝑘} and {∇𝑦̃𝑘} are then used for construction of local, linear piecewise 

approximation: 

 𝑌𝐿(∙) =  ∑ [𝑦̃𝑘(∙) + ∇𝑦̃𝑘(∙)  ∙  (𝑋 − 𝑥̃𝑘)] 𝟏(𝑋 ∈ 𝐶𝑘)
𝑚
𝑘=1   (5.18) 

The equation (5.18) gives the representation of 𝑌𝐿(∙) in each Voronoi cell 𝐶𝑘 by a hyperplane 

tangent to 𝑋 → 𝑌 at (𝑥̃𝑘, 𝑦̃𝑘), 𝑘 = 1… .𝑚 [9]. The ESROM scheme is depicted in Fig.5.2. 

 

 

Figure 5.2.  The extended SROM (ESROM) uncertainty propagation 

 

 

5.4.Numerical example 

  

For the purpose of illustration the SROM construction for the following random variables 

is given as an example: Gaussian random variable X ~ N (0, 1) and beta random variable X ~ B 

(5, 1). In each example the reconstructions of cdf and pdf are given and also the absolute error 

w.r.t. exact solutions for the first six stochastic moments. The SROM pdf is reconstructed by 
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using the values of SROM probabilities but scaled in order to compare it with the exact pdf on 

the same graph as it is the case for the exact solution. The algorithm described as the approach 

#2 is used for demonstration. The obtained results are suboptimal but it is evident that further 

work on optimization problem may result in even more accurate performance. 

The results for the cdf and pdf in Figs. 5.3. and 5.5. are satisfactory thus proving that both 

cdf and pdf can be reconstructed by using relatively small number of SROM samples even when 

a suboptimal and simple approach #2 is used. On the other side, even though the absolute error 

of moments is good in most of examples (Figs. 5.4. and 5.6.), one may conclude that the 

behaviour of the error is not consistent with the rising number of samples. The expected trend 

for absolute error of moments is supposed to decrease both with the increasing number of 

samples and with increasing the moment order. The explanation can be found in the fact that 

the used algorithm does not solve the minimization function directly and there is no way to 

affect the moments’ values. 

 

   

   

Fig. 5.3. The exact (blue) vs. SROM approximation (red) with 5, 10 & 20 samples (left to 

right) of cdf (top) and pdf (bottom) for the variable 𝑋 ~ 𝑁(0, 1) 
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Fig. 5.4. The absolute error between the exact (blue) and SROM approximations (red) of first 

six stochastic moments for variable 𝑋 ~ 𝑁(0, 1); SROM size is m=5,10 & 20, r=1,…6 

 

 

      

Fig. 5.5. The exact (blue) vs. SROM approximation (red) with 5, 10 & 20 samples (left to 

right) of cdf (top) and pdf (bottom) for the variable 𝑋 ~ 𝐵(5, 1) 
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Fig. 5.6. The absolute error between the exact (blue) and SROM approximations (red) of first 

six stochastic moments for variable 𝑋 ~ 𝐵(5, 1); SROM size is m=5,10 & 20, r=1,…6 
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6. State of the art 
 

Some areas in computational electromagnetics (CEM) suffer from uncertainties of the input 

parameters resulting in the uncertainties in the assessment of the related response. The 

uncertainties are often related to the dielectric material characteristics [52], geometrical sizes 

[53] and boundary conditions [54]. The control of various uncertainties related to the models is 

important as it impacts optimization design and performance of electromagnetic structures and 

products. These problems have been faced, to a certain extent, by an efficient combination of 

well-established deterministic electromagnetic models with certain stochastic methods. This 

chapter gives an overview of some works related to the uncertainty analysis reported in the 

areas of CEM, mainly electromagnetic compatibility (EMC) and bioelectromagnetism 

(BIOEM).  

 

6.1.Stochastic Analysis in Computational Electromagnetics 

 

The stochastic analysis via the gPC and SC methods cover a wide range of EMC 

applications: the signal integrity, microwave applications, design of integrated circuits (IC), 

microelectromechanical systems (MEMSs) and photonic circuits, antenna modelling, scattering 

problems etc. Depending on the underlying problem, different variants of UQ techniques have 

been used with great progress regarding their optimization in recent years.  

Various SC based techniques have been reported as promising UQ techniques in EMC area. 

The full-tensor SC has been used by Shen et al. for the stochastic analysis of variations of 

electromagnetic properties of composite mixtures [52], while Bonnet and his co-workers used 

it for numerical simulation of a reverberation chamber in [55].  Li and Jiang used the adaptive 

hierarchical sparse grid SC for the UQ of EM-circuit systems [56] combining the Lagrange and 

piecewise basis functions in order to build a more flexible UQ algorithm which can handle 

different stochastic systems. They verified the robustness of proposed approach on microwave 

circuits with microstrip interconnects, RLC resonant circuits and nonlinear power amplifiers. 

Also, they considered a far-field scattering of a dielectric sphere. A sparse grid SC was used by 

Agarwal and Aluru in [28] for stochastic analysis of electrostatic MEMS while Bai et al. 

proposed a dimension-reduced sparse grid SC method for EMC software [57]. M. Liu and S. 

Liu adopted the adaptive sparse grid method for the estimation of radar cross section (RCS) of 

object with uncertain shape [58]. 
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The UQ of RCS, affected by the uncertainty in shape of the objects and by the direction of 

the incident field, was also considered by Chauviere and his co-workers in [29]. However, they 

used the SC method combined with Stroud cubature rule. The same approach was used by Bagci 

et al. in [59] for propagation of uncertainties in electromagnetic excitations, system geometries 

and configurations to the output coupled voltages at the feed pins of cable-interconnected and 

shielded computer cards as well as the terminals of cables situated inside the bay of an airplane 

cockpit. Prasad and Roy introduced a SPICE-compatible stochastic collocation approach based 

on Stroud cubature for the variability analysis of complex and irregular-shaped power 

distribution networks (PDNs) [60]. Zhang and his co-workers proposed a big-data tensor 

recovery technique defined as a tensor recovery problem with sparse and low-rank constraints 

solved with an alternating minimization approach [61]. They successfully applied it to 

simulation of some IC and MEMs with up to 50 random input parameter reducing the huge 

number of simulation samples in standard SC to a very small one (e.g., from 1.5 × 1027 to 500). 

The examples of the gPC method applied to different areas in the EMC are numerous. 

Manfredi applied the gPC theory to the stochastic analysis of high-speed interconnect models 

with uncertain input parameters in his doctoral thesis [62]. An overview of the stochastic 

transmission line analysis via gPCE method may be found in [63]. A large number of uncertain 

input parameters was taken into account via the sparse polynomial chaos metamodel in the 

stochastic analysis of electronic bus by Larbi et al. [64]. In their recent work Prasad and Roy 

proposed a dimension reduction for efficient uncertainty analysis of microwave and RF 

networks in the polynomial chaos framework achieving better results w.r.t. classical sparse 

grids approach [65]. In [66] they addressed the issue of detecting and quantifying the mixed 

epistemic-aleatory uncertainties in the multiconductor transmission line networks by building 

a hybrid Chebyshev-polynomial chaos (CPC) metamodel. Petrocchi et al. carried out the 

analysis of the propagation of measurement uncertainty in microwave transistor nonlinear 

models [67]. They used gPC method and compared the results with the NIST Microwave 

Uncertainty Framework showing a significant reduction of the computational effort in case of 

gPC use. An adaptive least angle regression method for UQ in FDTD computation is proposed 

by Hu et al. in [68]. The variability of crosstalk due to changes in differential and ground via 

configurations is studied in [69] by using two UQ methods: gPC and response-surface method. 

The challenge of dealing with data coming from a real-time measurments was tackled by 

Alkhateeb and Ida in [70]. They proposed a multi-element arbitrary polynomial chaos (ME-

aPC) scheme for uncertainty quantification in sensors. Acikgoz and Mittra applied gPC 
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technique to a conducting array of split-ring resonator to study the effect of the uncertainties of 

its design parameters on its reflectance at terahertz frequencies [71]. 

Beside the gPC and SC methods, the SROM method has been introduced to the EMC by 

Fei and his co-authors. They used SROM for the analysis of an induced current in transmission 

line illuminated by a random plane-wave field [72] and for uncertainty quantification of 

crosstalk [73]. In their work they based SROM approach on a heuristic algorithm described as 

approach no.2 in section 5 and compared it with MC and SC methods. The results obtained by 

SROM were comparable to those of MC and SC approaches but with less input samples thus 

indicating a good potential of SROM based methods in this area.    

 

6.2.Stochastic Analysis in Bioelectromagnetism 

 

The use of electromagnetic (EM) fields in everyday life increases the constant public 

concern regarding their potential harmful effects on the human health. The nature of interaction 

between the EM fields and the human body is different at high and low frequency ranges (HF 

and LF). In the HF range body dimensions are comparable to the external field wavelength and 

the resonance effects become significant thus making the thermal effects dominant. In the LF 

range, however, the non-thermal effects could possibly have severe influence on the membrane 

cells. As an example, international standards and guidelines for HF exposure list the human 

brain as one of the most sensitive organs to the temperature variations. Contrary to the possible 

adverse health effects, the EM fields are often used in therapeutic purposes. One such example 

is the transcranial magnetic stimulation (TMS), a noninvasive and painless technique used for 

stimulation or inhibition of certain brain regions.  

Regardless the nature of EM field interaction with the human body, the understanding of it 

depends on the numerical and computational models. However, the input parameters of models 

used in bioelectromagnetism and EM dosimetry are by their very nature uncertain. The values 

of body tissue parameters such as permittivity and the electrical conductivity vary significantly, 

depending on the age and gender, but also between healthy and ill individuals. Most of the 

parameter values presented in overviews like [74] are obtained under different measurement on 

ex vivo animal and human tissues, and exhibit large variations from their averages [75]. When 

used in computational models, these average values lead to rough approximation of the real 

situation [76] [77].  
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Beside the body tissue parameters, the sources of radiation also exhibit random nature. The 

position and the orientation of antennas have different impact on the resulting induced fields 

[78]. In the process of quantification of people's exposure to complex environment, it is 

necessary to take into account the specific probability distribution of the angle of incidence and 

magnitude of electromagnetic waves [79]. Furthermore, a well-functioning wireless network 

demands the prediction of its coverage, capacity and throughput. Therefore in the numerical 

simulation a concept of stochastic city model is used which takes into account the random 

nature of built surface, height of building or length of streets [80].  

The models used in bioelectromagnetism and numerical dosimetry are computationally very 

demanding as they describe a very complex physical phenomena and environments. Despite 

the progress in high-performance calculation (HPC), uncertainty quantification based on 

traditional Monte Carlo method presents an enormous burden which is often unaffordable. 

Therefore the UQ methods such as gPC and SC have become of interest to many researchers in 

this area. The combination of the advanced electromagnetic solvers and the statistic tools have 

led to a novel approach called the stochastic dosimetry [81] enabling the faster computation of 

the stochastic moments, probability distribution and confidence intervals of specific absorption 

rate (SAR). In [82] Wiart et al. used a gPC method to characterize the statistical distribution of 

the SAR in children organs exposed to mobile phones in pockets with random position. 

Chiaramello and her co-workers utilized the gPC methodology to quantify the fetal exposure to 

a fourth-generation Long Term Evolution (4G LTE) tablet in realistic scenarios, assessing the 

influence of the position of the tablet, the gestational age of the fetus, and the frequency of the 

emitting antenna [78]. They also investigated the exposure of a female eight-year old child to a 

WLAN access point located in an unknown position in a realistic indoor environment in [83]. 

Cheng and Monebhurrun conducted the UQ of SAR using a computer-aided design mobile 

phone model by three nonintrusive UQ methods: unscented transformation, stochastic 

collocation, and nonintrusive polynomial chaos [84].  

Given that the temperature evaluation is a direct consequence of tissue heating, one 

important aspect of the HF numerical dosimetry is its evaluation. In order to do so, a bioheat 

transfer equation needs to be solved which includes certain thermal parameters of body tissues 

as the input variables. The effect of tissue parameters on skin heating due to millimeter EM 

waves was investigated by Zilberti et al. in [85]. 

The uncertainty of tissue electric parameters for UQ of the induced fields and current 

densities in human body due to ELF EMF has been taken into account by Gaignaire et al. in 
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[86]. By using the Hermite polynomial chaos they showed the probability of the induced fields 

to be over the thresholds defined by the international guidelines for limiting exposure to 

electromagnetic fields published by ICNIRP. Lallechere and his co-workers utilized a 

stochastic collocation method to propagate uncertainty of tissue electric parameters in 

stochastic modelling of biological cell subjected to pulsed EMF exposure [87]. 

The UQ of the fields induced in the human brain due to the exposure to coils used in TMS 

has been investigated by Weise et al. in [88] and Codecasa et al. in [89]. They modelled the 

conductivity of cerebrospinal fluid, gray matter and white matter as uniformly distributed 

random variables and propagated the uncertainty to the induced electric field via the 

nonintrusive gPC method. Their results showed the importance of exact knowledge of the 

electrical conductivities in TMS in order to provide reliable numerical predictions of the 

induced electric field. Moreover, in [90] they accounted for the correlation between the tissue 

conductivities. In addition to tissue conductivity, Gomez and his co-workers considered the 

variability of coil position and orientation and bran morphology [91] by using the high-

dimensional model representations via a multielement probabilistic collocation (ME-PC) 

method. They reported the following implications of the UQ results for the use of TMS during 

depression therapy: 1) uncertainty in the coil position and orientation may reduce the response 

rates of patients; 2) practitioners should favor targets on the crest of a gyrus to obtain maximal 

stimulation; and 3) an increasing scalp-to-cortex distance reduces the magnitude of E-fields on 

the surface and inside the cortex. The UQ of induced electric field in human brain due to 

uncertain TMS coil position and orientation via the multi-variate gPC expansions was 

considered by Li and Wu [92]. 

Beside the simulation of TMS, the UQ has been reported in simulation of some other 

biomedical applications of EMF, as well. To mention some, Aboulaich et al. studied the 

influence of errors and uncertainties of the input data, like the conductivity, on the 

electrocardiography imaging (ECGI) solution [93]. Schmidt and co-workers presented a 

computational models of an electrostimulative total hip revision system to enhance bone 

regeneration in [94]. They utilized gPC method to investigate the influence of uncertainty in 

the conductivity of bone tissue on the electric field strength and the beneficial stimulation 

volume for an optimized electrode geometry and arrangement.  

Furthermore, the uncertainty quantification of tissue dialectical properties has been reported 

in [95] by Arduino et al. They employed Monte Carlo method for uncertainty propagation in 

magnetic resonance-based electric properties tomography. Merla et al. proposed a stochastic 
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EM solution based on MC method for uncertainty estimation in microdosimetric study on 

erythrocytes [96]. 

In conclusion, all of the mentioned works indicate the importance of the exact knowledge 

of the electrical parameters of body tissues and sources of EM radiation. By taking into account 

their random nature and propagating it to the output we can increase our knowledge about the 

underlying physical processes and quantify their impact on reliability of numerical predictions 

of the induced electric field and related quantities.   
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7. Case study: Stochastic Sensitivity Analysis of 1D Bioheat Transfer 

Equation 
 

 

The knowledge about the temperature distribution is an important issue in planning and 

modelling of biomedical applications of electromagnetic (EM) fields, e.g. EM HyperThermia 

(EM HT) procedures used in the treatment of certain cancer types [97]. In order to model the 

interactions of EM fields with the body tissue in the EM HT process it is important to use values 

of the dielectric and thermal tissue properties as accurate as possible. Hence, it is important to 

incorporate the uncertainties in the tissue thermal parameters and quantify the uncertainty in 

the output temperature. Such an information can be useful when estimating the technical risk 

of medical devices and when optimizing their design regarding the efficacy and safety. 

A stochastic model of the bioheat transfer equation to assess the temperature distribution in 

the biological tissue is presented in this subsection. The stochastic collocation method is 

implemented to estimate the stochastic mean and variance, as well as, to carry out the sensitivity 

analysis of model.  The presented stochastic model and the related results have been published 

in [98]. 

 

7.1.Stochastic bio-heat equation 

 

The theoretical background for the modelling of heat transfer in the biological tissues relies 

upon the Pennes’ bioheat equation. In this case study the 1-dimensional bioheat equation 

governing the temperature distribution in the human skin is considered: 

 
𝑑2𝑇(𝑥)

𝑑𝑥2
− 𝑤𝑏 ∙ 𝑇(𝑥) + 𝑤𝑏 ∙ 𝑇𝑎 + 𝑄𝑚 + 𝑄𝑒𝑥𝑡 = 0 (7.1) 

where λ stands for the skin thermal conductivity, wb is the volumetric perfusion blood rate, Ta 

is the arterial temperature and Qm is the heat source due to metabolic processes. The term, Qext, 

represents the external heat source. In case of EM HT treatment this term represents the heat 

due to the influence of the EM field. For the present case study this term shall be equal to zero. 

The corresponding boundary conditions at the interface between the model surface and the air 

(x=L) are given as: 

 𝑇(𝑥 = 0) = 𝑇𝑐 
 

(7.2) 
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−𝜆 ∙
𝑑𝑇(𝑥)

𝑑𝑥
|
𝑥=𝐿

= ℎ𝑒𝑓𝑓 ∙ [𝑇 − 𝑇𝑎𝑚𝑏] 

where heff, Tc and Tamb  are: the convection coefficient, the body core temperature, and the air 

temperature, respectively.  

The deterministic bio-heat equation (7.1.) is solved by means of finite element method (FEM). 

The output of interest is the temperature distribution for a single setup of input parameters.  

However, in order to take into account the uncertainty present in the input parameters that 

describe certain tissue type, the equation should be treated as stochastic. The thermal 

parameters: λ, wb, Ta, Om, heff and Tf are modelled as random variables (RV) with uniform 

distribution in the range of ± 20% from their nominal values which are given in the Table 7.1. 

The random input vector is thus given as: X = [x1, x2, x3, x4, x5, x6] = [λ, wb, Ta, Qm, heff, Tamb]. The 

skin depth is considered to be L = 3 cm.  

 

Table 7.1.  The nominal values for the thermal parameters 

Thermal parameter Nominal value 

thermal conductivity λ [W/m°C] 0.5 

volumetric perfusion blood rate wb [kg/(sm3)] 2100 

arterial temperature Ta [°C] 37 

heat source due to metabolic processes Qm [W/m3] 33800 

convection coefficient heff 
[W/(m2 

°C)] 
10 

ambient temperature Tamb [°C] 25 

 

 

 

7.2.The results of stochastic computations 

The SC method is used as a wrapper around the deterministic code for the assessment of 

the stochastic response. Lagrange polynomials are chosen as basis functions, while collocation 

points in each dimension are chosen according to Gauss-Legendre or Clenshaw-Curtis 

quadrature rules for tensor or sparse grid products, respectively. The chosen sparseness 

parameter for sparse grid construction is q = 3. 
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The full-tensor SCM resulted in 729 deterministic simulations and sparse-grid SCM in 389 

simulations. The MCM method is used as a validation in the following way: 100 sets of MC 

simulations are computed, each with 1.000 samples. The reference mean and variance are taken 

from one MC simulation set with 1.000.000 samples. 

 

7.2.1. Stochastic moments of the output temperature  

 

The results for the mean and variance of temperature distribution are shown in Figs. 7.1. 

and 7.2. The quick convergence of the SCM w.r.t. MC simulations is obvious, particularly in 

the computation of stochastic variance. 

The crude estimation of the confidence intervals (CI) given as the mean value ± 1 standard 

deviation is shown in Fig.7.3. The maximal deviation is 6.43% from the mean value. 

 

Fig. 7.1. The mean value of the temperature distribution in the skin tissue obtained by MCM, 

full-tensor SCM and a sparse-grid SCM 
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Fig. 7.2. The variance of the temperature distribution in the skin tissue obtained by MCM, 

full-tensor SCM and a sparse-grid SCM 

 

 

 

Fig. 7.3. The confidence intervals (CI) given as the mean temperature ± 1 standard deviation 

of the temperature: <T> ± std(T). The results are obtained by using sparse grid SCM. 
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7.2.2. Sensitivity analysis of thermal parameters  

 

The influence of the variation in the input variables on the output temperature distribution 

is computed both by using the OAT and ANOVA approaches described in the section 2. The 

results for the OAT based approach are depicted on the left side of the figure 7.4. For each of 

the six univariate cases the mean ± one standard deviation is given, thus illustrating the 

wideness of the confidence interval range for each case. 

On the right side of the Fig. 7.4. the distribution of the first order sensitivity index values 

along the skin tissue is depicted for each input random variable. The sensitivity indices are 

obtained by means of ANOVA based approach combined with SC framework. 

The accuracy of the ANOVA based approach within the SC framework was validated 

against the Sobol’s sensitivity indices computed via MC based sampling for the first order and 

total effect sensitivity indices. The total number of MC samples is 1000 The results are depicted 

in the Figs. 7.5. and 7.6. 

The results of sensitivity analysis demonstrate the overwhelming impact of arterial 

temperature over the whole domain followed by the influence of metabolic processes, both in 

a homogenous trend. Other parameters exhibit nonhomogeneous influence. The values of total 

and first order indices are almost the same for each parameter, thus proving that none of the 

mutual interactions has a significant impact on the temperature distribution. 
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a) Skin thermal conductivity, λ 

 

 

b) Volumetric perfusion blood rate, Wb 

 

 

c) Arterial blood temperature, Ta 

 

Fig. 7.4.(a-c) The confidence intervals defined as mean value ± one standard deviation 

for six univariate cases (left) and the distribution of the first order sensitivity index for 

each random input variable along the skin depth (right) 
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d) The heat source due to metabolic processes, Qm 

 

 

e) The convection coefficient, heff 

 

 

f) The ambient temperature, Tamb 

 

Fig. 7.4.(d-f) The confidence intervals defined as mean value ± one standard deviation 

for six univariate cases (left) and the distribution of the first order sensitivity index for 

each random input variable along the skin depth (right) 
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 λ Wb Ta Qm hf Tamb 
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Fig. 7.5. The Sobol-like sensitivity indices at every point along the skin computed by MC and 

SC method: first order sensitivity index (top) and total effect sensitivity index (bottom) 

 

 

  



51 

 

8. Conclusion 
 

A continuous interest in the topics pertaining to uncertainty in engineering has resulted in 

growing number of theoretical and experimental studies in this area. Thus, over the last few 

years uncertainty quantification has been introduced in several engineering disciplines due to 

the complexity of physical phenomena. Namely, significant discrepancies between calculated 

and measured results stem from uncertainties in the input data set arising from numerical 

instabilities, geometry, manufacturing defects, noise in measurements, unpredictable and 

uncontrollable environmental effects, etc. 

This work reviews some applications of uncertainty quantification (UQ) methods in the area 

of computational electromagnetics and bioelectromagnetism. Besides the wide range of UQ 

applications, the development of three UQ methods and their respective variants has been 

described. Namely, the basic concepts of generalized polynomial chaos (gPC), stochastic 

collocation method (SCM) and stochastic reduced order model (SROM) method are given. 

Furthermore the “one-At-a-Time” (OAT) and the “Analysis Of Variance” (ANOVA) based 

approaches for sensitivity analysis are outlined. 

A state of the art for the stochastic analysis in the computational electromagnetics and 

bioelectromagnetism demonstrates the importance of the exact knowledge of the electrical 

parameters of materials, geometry and sources of EM radiation. By taking into account their 

random nature and propagating it to the output we can increase our knowledge about the 

underlying physical processes and quantify their impact on reliability of numerical predictions 

of the related output quantities. 

The example of UQ for the stochastic bioheat transfer equation, given in the last chapter, 

clearly demonstrates the efficiency of stochastic collocation method w.r.t. traditional Monte 

Carlo method. 
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Abstract 
 

Models used to simulate the interaction of electromagnetic fields with physical objects and 

the environment are mostly deterministic thus providing the result only for a specific setup of 

input parameters. However, some areas in computational electromagnetics (CEM) suffer from 

inherent uncertainties of the input parameters resulting in the uncertainties in the assessment of 

the related response. It is necessary to assess the stochastic output quantities in terms of 

stochastic moments (mean and variance), probability distributions, confidence intervals, etc. 

Moreover, in order to gain a better insight into the relationship between the input parameters 

and the output of interest, a sensitivity analysis of input parameters needs to be carried out. 

Traditional methods for uncertainty propagation are easy to implement as they rely upon 

statistical approaches, e.g. brute force Monte Carlo (MC) sampling. However, despite the fact 

that the sample size does not depend on random dimension, it still needs to be very high. 

Therefore, the non-statistical UQ methods have become of interest to researchers in this area. 

Contrary to statistical, the non-statistical approaches aim to represent the unknown stochastic 

solution as a function of random input variables. The nature of these methods can be intrusive 

or nonintrusive. The intrusiveness implies a more demanding implementation since new codes 

need to be developed, while the non-intrusive methods enable the use of previously validated 

deterministic models as black boxes in stochastic computations. Both approaches exhibit fast 

convergence and high accuracy under different conditions.  

The goal of this work is to outline some of the most popular UQ methods in CEM as well 

as to give a state of the art for UQ analysis in the CEM and bioelectrmagnetism. The basic 

concepts of three uncertainty propagation methods are given: generalized polynomial chaos 

(gPC), stochastic collocation method (SCM) and stochastic reduced order model (SROM) 

method. Furthermore, this work investigates the “one-At-a-Time” (OAT) and the “Analysis Of 

Variance” (ANOVA) based approaches for sensitivity analysis. Finally, an example of UQ for 

the stochastic bioheat transfer equation is given, thus demonstrating the efficiency of stochastic 

collocation method w.r.t. MC method. 
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Sažetak 
 

Matematički i računalni modeli koji se koriste za simulaciju interakcije elektromagnetskih 

polja i fizičkih objekata uglavnom su determinističke prirode pa tako daju rezultate koji vrijede 

samo za jedan specifičan set ulaznih parametara. Međutim, neka područja računalnog 

elektromagnetizma podložna su utjecaju nesigurnosti pristunih kod ulaznih parametara pa tako 

i izlazne veličine od interesa rezultiraju vrijednostima koje se rasipaju oko određene 

srednje/očekivane vrijednosti. Potrebno je, dakle, razviti matematički model koji omogućava 

proračun stohastičkih vrijednosti izlaznih parametara kao što su stohastički momenti: srednja 

vrijednost i varijanca, zatim distribucija gustoće vjerojatnosti, intervali pouzdanosti, itd. 

Štoviše, kako bi se dobio bolji uvid u odnos ulaznih i izlaznih parametara, potrebno je provesti 

analizu osjetljivosti.  

Tradicionalne metode za propagaciju nesigurnosti od ulaznih prema izlaznim parametrima, 

vrlo je lako implementirati budući da se oslanjaju na tzv. statističke pristupe kao što je npr. 

uzorkovanje Monte Carlo (MC). Međutim, usprkos činjenici da kod statističkih pristupa 

veličina uzorka ne ovisi o broju ulaznih parameara koji su nasumične prirode, sam uzorak treba 

biti jako velik, stoga su u posljednjih nekoliko desetljeća ne-statističke metode postale predmet 

interesa za mnoge istraživače u području računalnog elektromagnetizma (eng. computational 

electromagnetics, CEM), kao i u drugim granama znanosti. Sama priroda ne-statističkih metoda 

može biti intruzivna i neintruzivna. Intruzivnost podrazumijeva zahtjevniju implementaciju 

budući da je potrebno mijenjati postojeće determinističke kodove i njihova prilagodba 

stohastičkim metodama. S druge strane, neintruzivni pristup omogućava ponovnu upotrebu 

prethodno validiranih i testiranih determinističkih kodova u stilu “crne kutije”. Oba ne-

statistička pristupa rezultiraju brzom konvergencijom i preciznošću u različitim primjenama. 

Cilj ovog rada je predstaviti neke od najpopularnijih metoda za kvantificiranje nesigurnosti 

(eng. uncertainty quantification, UQ) u području računalnog elektromagnetizma kao i dati 

pregled literature s najvažnijim radovima (eng. state of the art) na tu temu. Obrađeni su osnovni 

koncepti triju metoda za UQ: popopćeni polinomni kaos (eng. generalized polynomial chaos, 

gPC), metoda stohastičke kolokacije (eng. stochastic collocation, SC) i stohastički modeli 

sniženog reda (eng. stochastic reduced order model). Nadalje, u ovom radu se istražuju dva 

pristupa analizi osjetljivosti, tzv. “jedan-po-jedan” pristup (eng. “one-at-a-time”, OAT) i 

pristup temeljen na “analizi varijance” (eng. “analysis of variance”, ANOVA). Konačno, dan 

je i primjer kvantifikacije nesigurnosti stohastičke jednadžbe prijenosa topline u biološkom 
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tkivu, u kojem je demonstrirana efikasnost metode stohastičke kolokacije u odnosu na metodu 

Monte Carlo. 


