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1. Introduction 

The Internet of Things (IoT) concept has grown in the last few years and its topics are highly 

researched. It is predicted that there will be up to 75 billion devices connected in IoT by 2025 

[1]. Basic IoT system consists of sensors collecting data, gateways as midpoint devices and 

cloud where data is stored, streamed, analyzed, and presented. Most of IoT systems have 

numerous sensors distributed within some area, each of which has its own battery with limited 

lifetime, which represents one of the main bottlenecks of this technology. Consequently, IoT 

sensor tasks have to be carefully planned as they can not handle large energy consumption 

requirements. Numerous sensors collect data in short time intervals, which will result with up 

to 79.4ZB of data generated by IoT in 2025 [2]. Finally, all the collected data is sent towards 

cloud where it must be processed and stored in large data centers. Furthermore, it is expected 

that 175ZB of data will be stored by 2025 [3]. However, more data is not always better than 

less data as collecting redundant data simply takes storage capacity without providing new 

information.  

 

As the volume of generated data increases, storing and processing it becomes significantly 

challenging. This is already recognized as the Big Data concept, commonly described with 

five Vs which stands for volume, velocity, variety, veracity and value [4]. Volume represents 

the amount of data, while velocity is the speed at which new data is generated and the speed at 

which data moves around. Variety stands for different types of data. Veracity is the measure 

of data uncertainty, while value is the information obtained from the collected data.  

 

Today, IoT requirements increase data volume and velocity, as well as variety. Finding the 

optimal balance between the volume reduction and the information loss (value) requires the 

utilization of data variety and thus reducing data velocity. The expected growth in the number 

of IoT data sources gives rise to network-edge computing [5]. Edge-mining stands for data 

processing on battery-powered devices placed at the edges of an IoT network. Such a solution 

would achieve reduction of data volume at the network edge and thus reduce energy 

consumption, bandwidth, as well as storage capacity and processing power at the cloud 

backend systems. The focus of our research is data velocity and volume reduction, while 

taking into a consideration data variety and preserving its value in all parts of an IoT system.  

 



 

2 

 

Processing data on the IoT edge can be achieved in several ways; data collected by sensors 

can be compressed, aggregated and/or correlated on IoT gateways and only then transferred to 

Cloud. To move even closer to the edge, data can be filtered on sensors themselves in order to 

forward only relevant information to an IoT gateway [5]. However, although the amount of 

data is decreased, sensors are still constantly turned on and consume energy.  

 

The paper is divided into 5 sections. Section I introduces the paper and provides motivation. It 

is followed by an IoT system design and overview of existing solutions in Section II. Section 

III provides structural approaches for combining IoT and Big data concepts more efficiently 

in terms of reducing data volume and energy consumption. Sections IV overviews open 

challenges, while Section V summarizes current research. The last, Section VI, concludes this 

document. 
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2.  IoT System overview 

 

Figure 1 IoT system design 

 

IoT systems consist of three main components; sensors that collect data from the environment 

and send it through gateway towards cloud, where data is analyzed and used for decision 

making. Each component receives the input data, performs internal data processing, and 

forwards output data (Figure 1). Input and output data can be received/forwarded using either 

push or pull mechanisms, or as their combination. The initiator for push mechanism is the 

southbound component, e.g., a sensor pushes the data towards a gateway at any moment, 

which requires the gateway to asynchronously wait for data transfer. For pull mechanism the 

initiator is the northbound component, e.g., a gateway requests data from sensor, which 

requires the sensor to be always on and waiting for data transfer. 

 

2.1. Sensors 

Sensors are endpoint devices that read physical measurements from the environment. As 

endpoint devices, sensors are commonly battery powered and have low data processing 

power. Due to growth of IoT, their application is increasing. Due to drastically reduced 

production costs, sensors are usually collecting more than one measurement type, so data 

collected by a single sensor can contain heterogenous values. 

• input data – a measurement collected by the sensor  

• output data – data processed on sensor and transmitted towards gateway 

 

2.1.1. Energy Efficient Approaches 

 

While collecting data from the environment, sensors are dealing with large amount of data in 

short time intervals and consequently, consume a lot of battery power, but with a lot of similar 

values collected. Sensors should implement algorithm that dynamically adapts reading 
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interval based on previously collected values as well as filter collected data, classify them and 

self-control data transmission according to their trends.  

 

• Input data 

In [6] Mastelic et al. introduce a dynamic monitoring frequency algorithm for collecting 

monitoring data from ultrascale systems. The algorithm deterministically reduces data 

velocity by dynamically self-adapting the monitoring frequency to the volatility of collected 

data. It also reduces data volume because it reads data less often but still keeps the same data 

value as the equivalent static monitoring frequency. The algorithm requires human 

(administrator) input of maximum and minimum periods as well as factor for calculating 

window size.  

Trihinas et al. [7] introduce AdaM, a lightweight adaptive monitoring framework for battery-

powered IoT devices with limitations in processing capabilities. Framework consists of two 

algorithms, one for adaptive sampling and other for adaptive filtering. In this part of the 

system, adaptive sampling, where algorithm dynamically adapts monitoring intensity based 

on the current evolution and variability of the metric stream with minor processor usage, is 

used. Results show that it reduces volume and energy consumption while preserving 

relatively high accuracy. 

In [8] Lujić et al. present a three layer (gathering, edge and cloud) architecture model for data 

storage management on the Edge. This includes an adaptive algorithm that is dynamically 

finding a trade-off between data accuracy and data volume, focusing on time series data. By 

using the proposed approach it is possible to reduce the amount of stored data by an average 

73.02% and 80.27% in each cycle for the two datasets respectively, while satisfying demands 

for forecast accuracy and thereby showing potential for saving limited storage space. 

Jia et al. in [35] propose a new, low-power, automatic, accurate, and wireless ammonia 

monitoring approach that uses metal oxide sensors. This approach does not wait for 

equilibrium as this consumes significant amount of energy, rather it tries to predict the 

resistance at equilibrium using the sensor’s transient measurements in the short heating 

window using LSTM neural networks. Proposed model accurately predicts the equilibrium 

state resistance value with an average error rate of 0.12%.  

Arendt et al. [41] present a model-predictive communication framework based on historical 

data analysis. Data collected in three previous days is used to predict fourth day values. Two 

algorithms, autoregression based ARIMA and a neural network with LSTM cells, are 

compared, in order to reduce communication effort. Results show a significant potential to 
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reduce communication effort per day of at least 60% ut to 95%, depending on the required 

accuracy, significantly contributing to the achievement of mMTC performance targets. 

In [42], Cecchinel et al. have investigated whether there is significant battery lifetime gain 

when using adaptive sampling and sending periods. Self-adaptive approach using machine 

learning and deep-sleep is used to provide an optimal configuration extending the battery 

lifetime of a sensor platform. Prediction model based on historical data is implemented on a 

middle layer, and it is used for the generation of the optimal configuration. Gain in the battery 

lifetime is compared to solution that uses fixed periods (with and without deep-sleep). It is 

shown that adaptive periods successfully lower the battery discharge. In experimental 

validation, authors have successfully scaled up the battery lifetime of a temperature sensor 

from a monthly to a yearly basis. 

 

• Output data 

The second part AdaM [7] algorithm, adaptive filtering, is useful  for preparing sensor output.  

After sampling algorithm selects data to read, filtering algorithm analyses the dataset and 

decides for every input, is it relevant and should it be passed to the next stage.  

In [9] Zordan et al. presents a lossy compression scenario which uses machine learning 

techniques for signal classification to improve energy efficiency while tolerating some 

distortion. The algorithm first collects timeseries data and extracts features. Next step is 

feature normalization and selection of relevant ones. Last step is signal classification. 

Experiments show that small number of features (< 20) achieve classification performance 

over 97%.  

In [10] Baharudin et al. propose low-energy algorithm for sensor data transmission from 

sensor nodes where the sensors can self-control data transmission according to the trends of 

data. It uses Adaptive Duty Cycle for data transmission adjustment frequency and 

Compressive Sensing (CS) for data compression. Simulation results show that collective 

transmission with CS-based data compression significantly reduces transmission energy. 

In [42], Cecchinel et al. have investigated whether there is significant battery lifetime gain 

when using adaptive sampling and sending periods. While adaptive sampling is optimization 

in input sensor data, adaptive sending periods optimize output of a sensor. As already written 

in previous section, experimental validation shows that this combination of adaptive 

parameters extends battery lifetime of a temperature sensor from a monthly to a yearly basis, 

while ensuring a proper level of data quality and freshness. 
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2.2. Gateways 

Gateways are midpoint devices placed between sensors and a data analytics backend in the 

cloud [11]. A gateway allows sensors to communicate over shorter distances and abstracts the 

underlying communication layer such as LoRa [12] on its southbound, while on its 

northbound it forwards the data towards the cloud. Before forwarding data, it can perform 

additional processing for optimization or on-site analytics and decision making. 

• input data – represents data coming from sensors. The data is received over a 

communication channel that sensors support, such as LoRa or even some proprietary 

solution. Consequently, the data format can also be arbitrary, which requires a 

gateway to speak the same language as the sensors. While the data is commonly 

pushed towards the gateway as previously explained, gateways can still support some 

type of push back communications towards the sensors as they are required to manage 

the sensor network, e.g., sending a configuration to sensors, load balancing different 

communication channels, etc. 

• output data – data received from sensors that is processed by the gateway and 

forwarded to the cloud for further analysis and decision making. With the rise of Fog 

and Edge computing, more functionalities are pushed towards gateways [13][14]. Due 

to their low computational power and storage capacity compared to the cloud, the data 

is still pushed to cloud. This is commonly done over the Internet, while 

communication channels can vary from 3G/4G and tomorrow 5G, to WiFi or even 

cable connection if the gateway is located in (sub)urban area. 

 

2.2.1. Energy Efficient Approaches 

 

Data from sensors are coming to the gateway. Sensors may decide when to push, or gateway 

may send pull request to one of sensors in the group, or to all of them, depending on their 

position, battery level or Internet connection. When received, gateway should filter, compress 

and corelate data in order to forward only relevant values towards the Cloud. 

 

• Input data 

Mushunuri et al. in [14] incorporate optimization libraries within the Robot Operating System 

deployed on a robotic sensor – actuators. To overcome the limitations of IoT devices in terms 

of computation power, Fog computing is used. One robot acts as a master node with others as 
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client nodes. Whenever there is data available for computation, the client robot shares its 

computation load in order to extend its battery lifetime. The Edge client robot having data for 

computation sends its entire data to Fog server robot that divides computation among peer 

robots depending on their communication path loss and power availability.  

Samie et al. in [15] propose a technique for managing computation offloading in a local IoT 

network under bandwidth constraints. The gateway gives each device its minimum bandwidth 

demand. Then it calculates the battery life of each device under this configuration and 

remaining bandwidth. The remaining bandwidth must be allocated to the devices, while 

prioritizing the devices with lower battery life. Results show more than 40% improvement in 

utilization of gateway’s bandwidth as well as up to 1.5 hour improvement in battery life. 

Liyanage et al. [16] proposes a proactive IoT gateway service scheduling scheme in the 

opportunistic Internet sharing environment. The scheme is to be used as a background service 

of a device to continuously retrieve the information of available gateways and to schedule the 

connection among the available gateways. The scheduling scheme reduces the re-connection 

between the collaborative devices and minimizes the unnecessary energy consumption 

derived from re-connection processes.   

In [17] Natarajan et al. propose an end-to-end system prototype for power-efficiently 

compression of continuous bio-signals in sensor network. The gateway dynamically tunes 

compression parameters to adapt to signal changes during continuous monitoring and 

transmits them to the sensor. Gateway dynamically adapts and tunes compression parameters 

based on current sparsity levels. Real-time parameter tuning is achieved by periodical 

transmission of raw measurements from the node to the gateway. This results with ~100X 

faster solution with energy consumption less than ~3% of standard encoder.  

In [18] Wang et al. propose sleep scheduling and wake up protocol. In this solution gateway 

calculates sleep interval for sensor in order to save their battery and achieve energy efficiency. 

Khandel et al. in [19] aim to reduce the communication overhead and propose a method that 

is able to determine which sensors should send their data to the central node and which one 

should drop data. Some sensors have high data correlation or they may have data that are not 

essential at the central node for current operation, the should drop their data. They designed a 

controller that selects a subset of sensors to send data to the cloud, while keeping the accuracy 

at an acceptable level. Considering the dynamics of the data collected at the sensors, 

Advantage Actor-Critic based reinforcement learning (RL) scheme is implemented to train 

the controller. They also demonstrated how the parameters of the RL reward function can be 

tuned to make an appropriate tradeoff between the accuracy and communication overhead. 
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• Output data 

In [20] NECtar agent, a solution for IoT network-edge data reduction is presented by 

Papageorgiou et al. This solution presents three main elements; streamification, one-click data 

handler instantiation and IoT-specific analysis. Streamification includes new data reduction 

algorithms that work upon data streams and take decisions per incoming data item. One-click 

data handler instantiation enables network-edge devices to select one of many possible 

algorithms and instantiate a handler that enforces the respective data reduction logic. Finally, 

IoT-specific analysis stands for one of the first network-edge data reduction algorithms 

evaluated specifically for IoT devices and datasets. NECtar achieves accuracies 76.1% to 

93.8% while forwarding 1/3 of data items, without adding significant forwarding delays. 

Razafimandimby et al. [21] present Bayesian Inference Approach. Sensors are collecting 

multiple values, including temperature and humidity, every 30 seconds. Gateways compute 

the probability of making an inference error in the cloud given the temperature and the 

humidity, before sending their data. If there is a strong chance that the error magnitude 

exceeds a predefined threshold, the gateway sends both humidity and temperature, else the 

gateway sends only the temperature data, and the humidity value will be inferred in the cloud.  

Evaluation results show that this approach drastically reduces number of transmitted data and 

the energy consumption, while maintaining an acceptable level of data prediction accuracy. 
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2.3. Clouds 

Data collected by sensors and processed by gateways ends up in the cloud where they are 

analyzed and archived. Due to distance from sensors, real-time systems may suffer of high 

latency, but latency decreases with introduction of 5G and high speed Internet [22]. 

Utilization of machine learning and prediction algorithms enables filling the gap between 

real-time systems and distant clouds [23]. Finally, distribution of cloud towards Fog and Edge 

reduces this lag even more [24]. 

• input data – represents data that is received by the cloud services, commonly in a push 

manner, i.e., gateways push the data towards the cloud. 

• output data – once received by the cloud services the data is then processed, visualised 

and stored. Data format on the output depends on its purposes, as well as the use case. 

Due to high data velocity, more processing is performed using streaming analytics 

while storing only relevant data. Even visualization is done only after preprocessing 

the data due to its high volume 

 

2.3.1. Energy Efficient Approaches 

 

After data is collected, it should be stored somewhere. Storing every single data that is 

collected results in large amount of similar data with great need for storage capacity. Before 

storing, data should be filtered, compressed and normalized in a smart way so only really 

relevant data is stored. 

 

• Input data 

In [25] Soultanopoulos et al. describe the data collection from Bluetooth Low Energy devices 

to identify and track data in real time and allow processing in the cloud to improve analysis. 

One of the main characteristics of this solution is smart mode of data transmission including 

the time interval, on demand-violation and rules. A gateway enables the processing of sensor 

data before they are transferred to the cloud. The experimental results demonstrate that the 

system supports real time communication and fast data collection with data transmission in 

less than 130 ms.  

In [26] Ge et al. proposes energy efficient solutions such as putting idle servers in Data Center 

(DC) to sleep as well as shutting down idle DCs during off-peak hours. 
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• Output data 

Meng and Liu [27] introduce the concept of monitoring-as-aservice (MaaS), its main 

components and requirements. There are three enhanced MaaS capabilities: window-based 

violation detection which can save 50% to 90% communication cost because of its parameter 

tuning ability; violation-likelihood based state monitoring which can adjust monitoring 

intensity based on the probability to detect important events which results with significant 

gain in monitoring service consolidation; and multitenant state monitoring techniques. 

Monitoring topology planning technique minimizes monitoring data delivery overhead that 

leads to improvements in the scalability of the service.  

Moon et al. in [28] compare lossy compression algorithms Discrete Cosine Transform (DCT), 

Fast Walsh-Hadamard Transform (FWHT), Discrete Wavelet Transform (DWT), and Lossy 

Delta Encoding (LDE) on weather sensor data. Results indicate that DCT and FWHT generate 

higher compression ratios than others. Regarding information loss, LDE outperforms others. 

Compression error is much severe in DCT and FWHT while LDE is able to maintain lower 

error rate than others. 

In [29] Eliseev et al. give an overview of modern methods, models and technologies to 

process Big data in large-scale system such as Map-Reduce. It also shows that Big data 

processing takes much less time on a cluster, compared to a single computer. 

In [38] Kosović et al. estimate value of daily solar radiation using Machine Learning (ML) 

algorithms. Input to ML algorithm are other collected parameters that are correlated to solar 

radiation. Using such approach, the amount of data that is being sent through whole IoT 

network is reduced. Cost is additionally lowered since one expensive sensor is removed from 

IoT network. 
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3. Energy Efficient Approaches for Data Velocity and Volume Reduction 

In order to build an energy efficient IoT system that is able to tackle Big Data challenges it is 

important to understand where reduction in data volume and velocity can be made and what 

are the trade-offs. This Chapter provides overview of the approaches with their applications 

on specific components of an IoT system and highlights their trade-offs. 

 

3.1. Dynamic monitoring frequency 

When reading data in short intervals, change in value is not necessarily detected. Thus, 

instead of collecting data on a specific interval, data should be collected when some event 

occurs. While this is possible only when system itself creates event, it is possible to emulate 

such behavior in systems where monitoring value is sensed from the environment by 

dynamically changing the monitoring frequency to detect and store only changes. The sensor 

should use lightweight algorithm [7][8] to collect data only when the significant delta is 

expected and sleep in the meanwhile. Consequently, if the current delta is lower than 

significant delta, monitoring interval increases and vice versa. This way, if data is changing 

slowly, sensor may be in sleep mode for hours instead for minutes. Otherwise, if data is 

sampled after it is collected, sensor still has to spend energy for data collection and analysis. 

Despite changing frequency on sensor, gateway still receives large amount of data from 

multiple sensors in small intervals, so it can also orchestrate data collection on sensor by 

sending pull requests, e.g. depending on the delta of multiple sensors. Since the gateway is a 

bigger and usually plugged in, orchestration can lower sensor battery consumption. However, 

such approach results in centralized architecture with two-way communication, which may 

increase sensor battery consumption due to constantly being online. Finally, either changing 

the monitoring frequency on a sensor or a gateway, deltas that occur between two readings is 

skipped and thus lost forever. This makes this technique hard to evaluate online and use 

machine learning to improve it as there is no data to evaluate its performance. 

 

3.2. Data filtering 

Sensors may filter data and transmit only relevant data, while ignoring the rest. On one hand, 

they save on transmission as less data is transmitted. On the other hand, sensors still have to 

collect data and consume energy while doing so. Furthermore, a complex filtering algorithm 

would require both processing power and as well as more memory. Therefore, filtering is 
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commonly performed on gateways as more powerful device. Either way, filtering requires 

high level knowledge of collected data to work in optimal manner. Consequently, the entire 

sensor network has to be managed in a distributed manner, where each gateway or a sensor 

has to be configured properly. Besides doing filtering on sensors and gateways, it can be done 

in the cloud as well. Filtering in the cloud results with significant reduction of volume while 

storing data and velocity when sending data to analysis. Besides doing filtering on sensors 

and gateways, it can be done in the cloud as well. Since the cloud is running a backend system 

it has all the knowledge of the data being collected, and thus can perform very efficient data 

filtering [28]. Filtering in the cloud results with significant reduction of volume while storing 

data and velocity when sending data to analysis. However, all the received data had to pass 

through the whole network, which may have produced high energy usage even before 

reaching the cloud. 

 

3.3. Data consolidation 

There is commonly a group of sensors within a certain area. Sensors may or may not 

communicate with each other. They can also decide when to send data and push them toward 

a gateway or decision can be made on the gateway, so the sensor has to wait for a pull 

request. They can agree on transferring bulk of data from only one sensor, or a single sensor 

that collects different data types can bulk transfer its readings. Problem is that all types must 

be read at the same interval, excluding dynamic frequency approach. For long intervals, 

sensors may not have enough memory or transmission might take too long. Using the 

consolidation scheme for gateways can be more feasible due to larger memory and better 

connection with the cloud than the one between sensors and gateways is. Gateways can also 

orchestrate Internet connection sharing [16] or share data computation load among sensors 

towards saving energy [14] based on bulk transfer principles. In the cloud, consolidation can 

also take place when storing and partitioning data, e.g., related data can be stored together for 

quick and easy access. 

 

3.4. Data aggregation 

Data aggregation presents data in a summarized form, e.g., storing average values or a trend 

instead of raw data. Using this approach, sensor device can aggregate data in some predefined 

interval and send only aggregated values. It may also compare collected value with 

aggregated one and send both values if they vary significantly. Same procedure can be 
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implemented on gateways; they can also aggregate values from multiple sensors at the same 

moment in time. Cloud may also implement similar approach and aggregate data to reduce 

required storage capacity. 

 

3.5. Data correlation 

Data correlation refers to a process of combining the data in some manner, either by 

correlating it with some other data and thus applying the soft(ware) sensor concept 

[21][30][38], namely correlating different sensor values to obtain additional one instead of 

measuring it with a hardware sensor, or by correlating the same type of sensor data between 

different sources. A sensor device can collect one or multiple data types. If it collects multiple 

values, e.g., temperature and humidity, it can corelate those metrics by some rule and read 

and/or transmit only one of them, e.g. temperature, while humidity can be inferred on a 

gateway or a server using some algorithm, e.g., BP [21]. To achieve this, sensors require 

high-level knowledge of temperature humidity correlation. Dynamic frequency discussed 

earlier can be defined using this correlation, e.g., by reading temperature values constantly 

while humidity is read only if the temperature changes. However, this complicates the sensor 

algorithm and thus consumes more energy on an already battery powered device. Gateway 

receives large volume and variety of data, so it can correlate data form different sensors which 

are close to each other, or correlate different sensor types. It can also orchestrate data 

collection on the sensor side based on correlation by scheduling them for optimal 

performance, such as the sensor battery level [15]. For instance, a group of sensors collect 

temperature. If two sensors are close to each other and one collects value of 5°C, other will 

probably collect the same or very similar value. If difference between two sensor values is 

less than the significant delta (e.g. 1°C) gateway could learn that those two sensors can be 

read interchangeably. Similar approach can be taken in the cloud, which like filtering requires 

transferring all the data into cloud. However, implementing soft sensors in the cloud also 

keeps the raw data as well, so any other analysis can be performed later on. 

 

3.6. Data compression 

Lossless compression on sensors can be achieved in several ways i.e., only changes of values 

(deltas) can be sent instead of full values. If sensors are collecting data in predefined period, 

they could exclude timestamp and it can be calculated later from a known period. 

Furthermore, if sensors send a predefined structure, they can exclude variable names. Instead, 
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gateways could be implemented to read the predefined structure. While all these 

compressions would save only bytes of transmission data, in radio communication each byte 

counts. Typically, lossy compression is aimed at saving transmission energy, yet affects the 

quality of transmitted data over lossy channels. Accordingly, using error correction coding 

along with compression is required to guarantee both energy efficiency and high-fidelity 

reconstruction [39]. Similar compressions can be performed on inter-gateway communication 

and clouds as well, where due to huge amount of data few bytes become gigabytes of data. 

 

3.7. On-site data analytics 

On-site data analytics performed on a gateway represents Edge [14] – a concept for collecting 

and analyzing data on the spot. In such scenarios, data is only forwarded to the cloud for 

storing or post-analysis, while all the decision making is moved closer to the Edge, namely 

gateways and sensors. Furthermore, on-site data analytics applied in the cloud would refer to 

the streaming analytics, i.e., the ability to constantly, in real-time measure and analyze data 

while moving within the large data streams. Afterwards, data can be stored (in compressed, 

aggregated, consolidated form, or as raw data) for archive. 
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4. Open Challenges 

There are still many open challenges that have to be taken into consideration when building 

IoT system for handling Big Data:  

• Remote configuration – as previously mentioned, there are many sensors and/or gateways 

distributed in some area and they must be configured, either at deployment or during 

runtime. This requires standardized approach for remote configuration, e.g. all sensors as 

well as gateways should be configurable from a remote device, either a server or one of 

the gateways. Consequently, this required standardized interfaces and communication 

protocols, as well as reuse of existing solutions in order to achieve industry standards. 

• Data reduction trade-offs – Reducing data volume and/or velocity comes with trade-offs, 

namely loss of data, additional processing at the network edge, as well as in the cloud for 

recreating missing data for analytic purposes or more complex analytic algorithms that 

can handle missing data. That said, data reductions should be balanced not to create even 

more energy consumption in backend, or even reduce data value and usage. In order to 

tackle this challenge new metrics are required, namely those that are able to measure 

concepts such as data value and data loss, as well as energy savings and trade-offs in such 

systems. 

• Signal type recognition – As number of IoT devices is increasing, large number of 

devices, monitoring different environmental phenomena, are connected to a single IoT 

network. To reduce energy consumption, sensors may send only timeseries data. Thus, 

knowledge of data type is linked with sensor generating it only in the cloud. In case of 

unexpected problems, including network, database, etc., sensors will continue to send 

data, but knowledge of data type is lost. Machine learning can be used to learn parameters 

that describe specific signal from chunks of signal, in order to correctly classify data type 

and restore the network. 

• Online evaluation – When implementing reduction algorithms that skip or in some way 

omit data, there is no straightforward approach to evaluate and thus improve those 

algorithms online. Therefore, use of machine learning (ML) might be limiting. However, 

creating simulators that are able to virtually mimic the real world use cases would allow 

writing and testing these algorithms in near-realistic situations. This is possible due to the 

nature of real world sensor data as it can be modelled as a continues signal sampled in 

discrete manner. 
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• General purpose algorithms – As IoT equipment evolves, more devices will serve general 

purpose.  However, creating generic data reduction algorithms represents a challenging 

task due to high data variety as well as variety of use cases. Therefore, the first step 

towards a solution is creating a variety of common datasets used for evaluating the 

algorithms. This way, a methodical research can be applied in order to tackle this 

challenge. 
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5. Current and future work 

This chapter will give an overview of current research, as well as future plans. In order to 

perform Big data optimization in IoT, the main focus is put on data reduction on the edges of 

IoT. Reduction on sensor side results with the highest energy savings since data is eliminated 

before it is even collected. Therefore, two approaches will be resarched; predicting final value 

from chunk of data and dynamic monitoring frequency approach. 

 

5.1. Predicting value from chunck of data 

There are sensors that have to heat up before being able to collect some metric from the 

environment. Example of such sensor is gas sensor, e.g. MQ-2 gas sensor [40]. In order to 

collect the actual value representing the gas concentration, a gas sensor needs to heat up. 

During this preheat time, voltages and currents take time to stabilize to obtain readings of the 

actual gas concentration. A momentary variation in the current or the voltage during this 

preheating transition is called a transient, only after which an actual value can be read. 

However, transients in low cost sensors can take minutes, which consumes significant amount 

of energy from a battery powered sensors. Therefore, instead of waiting for the sensors to 

fully preheat, only parts of the transient can be collected. As Jia et al. show in their research 

[35] energy can be saved if gas values are predicted from a part of the transient using LSTM 

neural network [31]. 

Once sensor readings are stabilized, the sensor can periodically read data while continuously 

being online as shown in Figure 2a. In case the sensor is put to sleep to save energy, it has to 

preheat after every sleep period and then read the last value of the transient, i.e., the actual 

value of gas concentration. This scenario is shown in Figure 2b. Approach we propose, where 

a sensor reads multiple values from the first part of the transient, while the actual value is 

estimated from that part using machine learning, is depicted in Figure 2c. This way, the sensor 

will have a longer sleep period, while more values are read in its short online period. 
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Figure 2 Three scenarios for sensors setup, namely a) always online, b) with full preheat and 

sleep period and c) with prediction based on a partial preheat and sleep period 
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5.2. Dynamic monitoring frequency 

Dynamic monitoring frequency approach is already described in Chapter 3.1. Future plan is to 

implement such algorithm in order to predict when expected change will happen. For 

algorithm implementation it is planned to use machine learning methods as well as statistical 

methods, since statistical method have provide good results in [6] and [7]. 

Alternative to dynamic monitoring frequency is data collection with fixed interval. Figure 3 

and Figure 4 show one day of temperature data. Figure 3 depicts ideal data collection 

algorithm (an optimistic baseline) on one day data, where data is collected only when it is 

changed for 0.5°C. There would be only 37 values collected that day, instead of 1440 actually 

collected values, with one minute period. As this algorithm collects data dynamically, amount 

of collected data in known only after data collection. Thus, this solution should be compared 

to algorithm that collects the same amount data, while collecting with fixed period. Figure 4 

depicts values that would be collected by algorithm that collects the same amount of readings 

with fixed interval of 39 minutes. In this case, minimal collected delta is 0.1°C and maximal 

delta is 1.3°C, on the first day of dataset. 

 

Figure 3 One day data collected with ideal algorithm that collects temperature only when it is 

changed for 0.5°C 
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Figure 4 One day data collected with fixed interval = 39 minutes 
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6. Conclusion 

IoT usage is growing in last few years and number of IoT devices is increasing rapidly. 

Therefore, amount of collected data is increasing as well, which leads to Big data problems. 

IoT sensors are commonly battery powered so growth of data volume also results with high 

energy consumption and short-lasting batteries. This paper provides an overview of the 

existing solutions related to IoT and Big data concepts focusing on data velocity and volume 

reduction, while taking into a consideration data variety and preserving its value. Velocity and 

volume reduction is considered in all parts of IoT system, namely sensors, gateways and 

cloud. The work is structured to differentiate relevant research fields and key points within 

the IoT system where Big data optimization can be done.  

 

Data reduction on sensor side can be made on input side, i.e. collecting data with dynamic 

monitoring frequency or on sensor output where sensor can process data and forward only 

relevant data towards gateway. Input data on gateway side can be optimized i.e. by sleep 

scheduling and wake up protocol  in order to collect data only from one of correlated sensors. 

On output side gateways can i.e. aggregate values from multiple sensors at the same moment 

in time. Just as on gateways input side, similar approach can be applied for clouds input, i.e. 

outputs from correlated gateways can be collected interchangeably. At the end, as cloud 

output, data can be stored (in compressed, aggregated, consolidated form, or as raw data) for 

archive. Additionally, related data can be stored together for quick and easy access. 

 

It is shown that knowledge of future helps reducing energy consumption; either by predicting 

final value of sensor with long heat-up period [40] or by predicting when will significant 

change occur in the future i.e. dynamic monitoring frequency. Thus, machine learning 

techniques can be used to reduce energy consumption. In the future, focus will be on finding 

light-weight algorithm for sensors that will enable them to collect data only when the 

significant delta is expected and sleep in the meanwhile to reduce battery consumption.  
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8. Labels 

IoT – Internet of Things 

5Vs – volume, velocity, variety, veracity and value  

LoRa - Long Range spread spectrum modulation technique 

ML – Machine Learning 

LSTM – Long Short-Term Memory 
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9. Abstract 

With everyday growth of Internet of Things (IoT), number of connected sensor devices 

increases as well, where each sensor consumes energy while being constantly online. During 

that time, they collect large amounts of data in short intervals leading to the collection of 

redundant and perhaps irrelevant data. Moreover, being commonly battery powered, sensor 

batteries need to be frequently replaced or recharged. Former requires smarter and less 

frequent data collection, while latter being complementary to the former requires putting them 

to sleep while not being used in order to save energy.  

 

In this document, existing research work related to IoT and Big data concepts is surveyed and 

presented, with the focus on data velocity and volume reduction, while preserving value and 

variety of data. The work is categorized and structured to differentiate relevant research fields 

and key points within the IoT system where Big data optimization can be done. The system 

includes a complete data path from end-point sensors, through network of gateways, to the 

backend cloud and its users. The paper covers different approaches to Big data optimization 

in IoT. 

 

It is shown that machine learning can be used as a tool for predicting future values. Predicted 

values are used to gain knowledge about future what helps reducing energy consumption; 

either by predicting final value of sensor with long pre-heat period and thus reducing energy, 

or by predicting future value and deciding if significant change will occur i.e. dynamic 

monitoring frequency. 
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