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1. INTRODUCTION 

In the traditional face-to-face learning environment, a teacher makes conclusions about 

learning progress based on students' responses to different questions and assignments in the 

classroom. During this process characterized by uncertainty, the teacher's task is to estimate the 

student’s current knowledge level and adapt the teaching approach. Since students differ in prior 

knowledge and learning abilities, their knowledge assessment can be challenging even for 

experienced teachers. A more appealing environment is the tutoring environment as one-on-one 

tutor-student interaction in which technology mimics human teachers. Such environment enables 

personalized and adaptive tutoring, taking into account potential difficulties and misconceptions. 

The researchers of the interdisciplinary field of cognitive science, artificial intelligence, and 

educational technology have computerized teaching and learning since the 1960s by developing 

various types of educational platforms, e.g. Computer Assisted Instruction (CAI) [1], Intelligent 

Tutoring Systems (ITS) [2], Intelligent Learning Environments (ILE) [3], Adaptive Instructional 

Systems (AIS) [4], etc. While all these platforms target adaptive and intelligent behaviour, the 

extensive research of ITS over the years gathered the scientific community and represents a 

valuable research background. The ITS community agreed on the standard architecture and set 

the student module (includes information about what to learn) as one of the four basic structural 

components of the generalized ITS [5]–[9]. Other modules include the domain knowledge 

module (includes information about what to learn), the tutoring module (how to teach), and the 

communication module (tutor-student interface). The main quality of an ITS is its ability to 

observe and interpret student behaviour to infer the preferences and needs of an individual 

student. The student model defined in the student module is an essential component of the ITS 

that provides adaptive and personalized tutoring. It enables a comprehensive representation of 

student knowledge and affects the quality of the other ITS components. 

Besides the previous, other widely used educational platforms are Learning Management 

Systems (LMS) such as Moodle and Massive Open Online Courses (MOOC). Although these 

platforms do not incorporate adaptive and intelligent behaviour, their popularity offers valuable 

testing ground to improve the teaching, learning and testing processes. They do track various 

student interactions, so they are often the focus of research in the field of Educational Data 

Mining (EDM) and Learning Analytics (LA). 

The main challenge of the student model is the knowledge inference process that aims to 

estimate the knowledge level during the learning process. Bridging the gap between the student's 

input to the system and the system's conception and representation of a student's knowledge is 

known as knowledge tracing [10]. Over the years, researchers used different Machine Learning 

(ML) techniques to model student knowledge. According to previous review studies on student 

modelling [11]–[23], Bayesian networks are continuously investigating ML technique and the 

Bayesian Knowledge Tracing (BKT) [10] based on the Hidden Markov Model is the most 

representative and still state-of-the-art approach. The BKT advantages include its simplicity in 

definition, ability to infer student knowledge, parameter interpretability and applicability to 

datasets limited in size. Since the vanilla term refers to technology not customized or updated 
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from its standard form, the BKT model first proposed by Corbett and Anderson [10] is further 

called the vanilla BKT model. 

Based on the vanilla BKT model, various enhancements have been investigated in the literature, 

however, there is no systematic and up-to-date review on the family of BKT models. In the 

following sections, we present the review study of the BKT enhancements based on uniquely 

proposed criteria that apply the Preferred Reporting Items for Systematic Reviews and Meta-

Analysis (PRISMA) guidelines [24]. The review study aims to answer the following Research 

Questions (RQ): 

RQ1: What has been proposed in the literature to enhance the vanilla BKT model since its 

emergence in 1995? 

RQ2: Which evaluation approaches, including educational platforms and performance measures 

were part of the research on the BKT enhancements? 

The remainder of the qualification exam discusses previous student modelling studies, presents 

brief description of the vanilla BKT model, the methodology used to review the BKT 

enhancements, the results and finally, the conclusion. 
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2. STUDENT MODELLING 

The previous research generally refers to overviews [16], [20]–[23] and reviews [11], [13]–

[15], [17], [18]. Only a few studies used systematic methodology to investigate the literature [12], 

[19]. Table 2.1 provides the complete list of proposed taxonomies of student modelling 

approaches in descending chronological order. It consists of (i) the research study reference, (ii) 

the specificity of the study, and (iii) proposed student modelling taxonomy. The BKT-related 

student modelling approaches are emphasized in italic in Table 2.1. 

Table 2.1: Proposed taxonomies of student modelling approaches. 

Research study Specificity of the study Proposed taxonomy of student modelling approaches 

Liu et al (2021) The review from the 

technical point of view 

Probabilistic models; Logistic models; Deep learning-based models 

Ramirez Luelmo et al 

(2021) 

The systematic review of 

machine learning techniques 

(2015-2020) 

Bayesian Knowledge Tracing; Deep Knowledge Tracing; Long-Short 

Term Neural Networks; Bayesian Networks; Support Vector Machines; 

Dynamic Key-Value Memory Network; Performance Vector Analysis 

Pelanek (2017) The review focused on the 

macro adaptive behaviour 

(curriculum sequencing) 

(2014-2020) 

Bayesian Knowledge Tracing; Logistic models 

Anouar Tadlaoui et al 

(2016) 

The review focused on the 

Adaptive Educational 

Systems 

Overlay; Stereotype; Machine Learning; Plan Recognition; Differential; 

Perturbation; Bayesian Networks 

Sani et al (2016) The review focused on the 

Intelligent Tutoring Systems 

(2010-2015) 

Bayesian Knowledge Tracing; Fuzzy Logic; Overlay; Differential; 

Perturbation; Constraint-based; Machine Learning; Stereotype 

Kurup Et Al (2016) The overview focused on the 

Intelligent Tutoring Systems 

Overlay; Bayesian Network; Correct First Attempt Rate; Performance 

Factor Analysis; Tabling; Bayesian Knowledge Tracing 

Zafar & Ahmad 

(2013) 

The review of the student 

modelling approaches under 

uncertain conditions 

Student modelling using statistical reasoning (Bayesian Networks, 

Reasoning using Certainty Factors); Fuzzy Modelling 

Pavlik et al (2013) The review focused on the 

Intelligent Tutoring Systems 

Overlay models (Rule Space models, Model Tracing models, Constraint-

based models); Knowledge Space models; Dialogue models; 

Programmed Branching; State and Trait 

Chrysafiadi & Virvou 

(2013) 

The systematic review 

focused on the Adaptive 

Educational Systems (2002-

2012) 

Overlay; Stereotypes; Perturbation; Machine Learning; Cognitive 

Theories; Constraint-based Model; Fuzzy Modelling; Bayesian 

Networks; Ontology-based Modelling 

Harrison & Roberts 

(2012) 

The overview of student 

modelling techniques for 

application in serious games 

Knowledge Tracing; Performance Factor Analysis; Matrix Factorization 

Desmarais & Baker 

(2012) 

The overview of the most 

successful and widely used 

approaches focused on the 

macro adaptive behaviour 

(curriculum sequencing) 

Tutors for problem-solving and solution analysis (Cognitive tutors and 

Constraint-based modelling); Content sequencing tutors (Models of 

skills - Bayesian Networks and graphical models, IRT and Latent Trait 

models, Latent cousins DINA, NIDA, DINO, NIDO, Bayesian 

Knowledge Tracing, Models without hidden nodes) 

Vandewaetere et al 

(2011) 

The overview of the 

parameters that are included 

in the student model when 

developing adaptive learning 

environments 

Stereotypes; Feature-based modelling; Combination of stereotypes and 

feature-based modelling; Other approaches (Constraint-based modelling 

and Modelling of misconceptions) 

Brusilovsky & Milan 

(2007) 

The overview focused on the 

Adaptive Hypermedia and 

Adaptive Educational 

Systems 

Overlay; Uncertainty-based modelling 
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Each study in Table 2.1 gave overview of student modelling approaches related to specific 

educational platforms, adaptive behaviour or used techniques. While the first review recognized 

the overlay and uncertainty-based student modelling approaches [23], later studies proposed 

more extensive taxonomies. In the early review studies, ML techniques were already recognized 

as the basis for different student modelling approaches [20], [21]. Over the time, the use of new 

techniques complemented the previous student modelling taxonomies [11], [12]. However, the 

new taxonomies of student modelling approaches are still adopted, and there is no consensus on 

the correct taxonomy.  

As the subfield of artificial intelligence, ML works on algorithms that enable machines to learn 

through experience and using data [25]. ML techniques used for student modelling offered new 

ways to enhance the adaptiveness and intelligence of educational platforms. Those identified in 

the already mentioned research studies include the Bayesian Networks, the Logistic Regression, 

the Neural Networks, the Support Vector Machines, the Fuzzy Logic, and the Matrix 

Factorization (Table 2.2). 

Table 2.2: ML techniques identified in the research on student modelling. 

Research study 
Bayesian 

Networks 

Logistic 

Regression 

Neural 

Networks 

Support 

Vector 

Machines 

Fuzzy 

Logic 

Matrix 

Factorization 

Liu et al (2021) + + + - - - 

Ramirez Luelmo et al (2021) + + + + - - 

Pelanek (2017) + + - - - - 

Anouar Tadlaoui et al (2016) + - -  - - 

Sani et al (2016) + - - - + - 

Kurup Et Al (2016) + + - - - - 

Zafar & Ahmad (2013) + - - - + - 

Pavlik et al (2013) + - - - - - 

Chrysafiadi & Virvou (2013) + - - - + - 

Harrison & Roberts (2012) + + - - - + 

Desmarais & Baker (2012) + - - - - - 

Vandewaetere et al (2011) - - - - - - 

Brusilovsky & Milan (2007) + - - - + - 

Moreover, Liu et al. [11] summarized the student modelling approaches as probabilistic, logistic, 

and deep learning-based models. The probabilistic models, such as BKT, are based on Bayesian 

Networks and assume that the learning process follows a Markov process, which uses the 

observed states to estimate the student's hidden knowledge states. The logistic regression 

models, such as Learning Factor Analysis [26] and Performance Factor Analysis [27], involve 

the mathematical function of learning parameters and logistic regression to predict the 

probability of mastery. The last group of knowledge tracing approaches, the deep learning 

models, are based on neural networks, and they have been introduced in recent years [28].  

Ramirez Luelmo et al. [12] investigated ML techniques employed in student modelling from 

2015 to 2020. Their research results indicate the most common ML techniques as BKT (18 

research studies), Deep Knowledge Tracing (13 r.s.), Long-Short Term Neural Networks (12 

r.s.), Bayesian Networks (11 r.s.), Support Vector Machines (7 r.s.), Dynamic Key-Value 

Memory Networks (7 r.s.), and Performance Factor Analysis (6 r.s.).  
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Overall, Bayesian networks are the continuously investigated ML technique used for student 

modelling, and vanilla BKT based on the Hidden Markov Model is the most representative. 

Since the vanilla model is one of the first and still state-of-the-art approaches, researchers in the 

field have often recognized it as a unique student modelling approach. 

As for the model preference, there is no general agreement on the choice between the 

probabilistic and the logistic models. The researchers often prefer one model but provide no 

rationale behind their choices [13]. On the other side, the apparent accuracy improvement of 

deep learning-based models over BKT was due to the high dimensional hidden space and ability 

to observe interleaved skills in a single model [29]. The comparison between Neural Network-

based research and the vanilla BKT model revealed that simply enabling the forgetting parameter 

of the vanilla model led to a performance close to deep knowledge tracing on several datasets 

[30], [31]. The intuitive knowledge inference process of knowledge tracing makes the BKT 

model different from the Neural Network-based model, which does not have insight into it and 

hence lacks interpretability. 

This work differs from other literature reviews on several accounts since it focuses on the 

probabilistic BKT models, systematically covers the research works published since the 

introduction of BKT in 1995 up to the most recent research and reviews the BKT enhancements 

and evaluation approaches. 
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3. VANILLA BAYESIAN KNOWLEDGE TRACING (BKT) 

The vanilla BKT model is one of the first ML knowledge tracing models introduced by 

Corbett and Anderson [10]. It is considered as the first significant milestone of the EDM research 

field [32].  

The vanilla model results from the work on the ACT Programming Tutor and reflects the ACT-R 

cognitive theory (Adaptive Control of Thought – Rational) [33], which states that mastering a 

complex skill implies its components. Also, it reflects the use of the Bayesian computational 

procedure identified in Atkinson's work [34]. 

A Bayesian Network is a probabilistic graphical model for representing knowledge about an 

uncertain domain where each node corresponds to a random variable and each edge represents 

the conditional probability for the corresponding random variables. A Hidden Markov Model is a 

special Bayesian Network used to trace not directly observable events by using a sequence of 

directly observable ones. In BKT, student knowledge is represented as a hidden node, while 

student performance is represented as an observable node. Both types of nodes are assumed to be 

binary, including the unlearned (u) and learned knowledge states (l) and the correct (c) and 

incorrect performance states (i). 

Figure 3.1 shows the hidden student knowledge nodes kct, t ∈ {1, 2,...T} and observable student 

performance nodes spt, t ∈ {1, 2,...T} of the vanilla model HMM’s as circles and rectangles. 

 

 

 

  

 

 

Figure 3.1: The vanilla BKT model and its instantiation process. 

While P(L0) is the initial probability of knowledge before any opportunity of applying it (prior 

knowledge), the arrows between the circles indicate the transition probabilities, and the dashed 

ones (from the circles to the rectangles) indicate the emission probabilities. The transition 

probabilities refer to the probability P(T) of a knowledge transitioning from unlearned state u to 

learned state l and to the probability P(F) of forgetting a previously known knowledge which is 

assumed to equal zero in the vanilla model. The model defines emission probabilities by 

guessing the probability of correctly answering unlearned knowledge P(G) and the slip 

probability of making a mistake when answering a learned knowledge P(S).  

Figure 3.2 shows the complete set of vanilla model parameters consisting of P(L0), P(T), P(G), 

and P(S) in a matrix form. 
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kc1 

sp1 

kc2 

sp2 

kcT 

spT 

P(G) P(S) 
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Priors 

learned P(L0) 

unlearned 1- P(L0) 

 

 

Transitions 

 to learned to unlearned 

from learned 1 0 

from unlearned P(T) 1- P(T) 
 

Observations 

 correct incorrect 

learned 1- P(S) P(S) 

unlearned P(G) 1- P(G) 
 

Figure 3.2: BKT parameters in a matrix form [35]. 

The main task of the vanilla model is to estimate the probability that a student has mastered the 

knowledge at time step t, denoted by a learning parameter P(Lt), t≥0. The model updates the 

probability P(Lt) after each opportunity to apply knowledge given an observed correct or 

incorrect response as follows: 

𝑃(𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑡) =  
𝑃(𝐿𝑡−1)(1−𝑃(𝑆))

𝑃(𝐿𝑡−1)(1−𝑃(𝑆))+(1− 𝑃(𝐿𝑡−1))𝑃(𝐺)
   (3.1) 

𝑃(𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑡) =  
𝑃(𝐿𝑡−1)𝑃(𝑆)

𝑃(𝐿𝑡−1)𝑃(𝑆)+(1− 𝑃(𝐿𝑡−1))(1−𝑃(𝐺))
   (3.2) 

If evidencet ∈ {Correctt, Incorrectt} means the correctness of a student's answer of the t-th 

opportunity to apply knowledge, the updated probability for the following time step is defined 

as: 

𝑃(𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒𝑡) =  𝑃(𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒𝑡) + (1 − 𝑃(𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒𝑡)) ∗ 𝑃(𝑇)  (3.3) 

At first, the model calculates the probability that the student knew the answer before making an 

attempt, using the evidence from the current step. Then, taking this into account, it computes the 

likelihood that the student learned it after the attempt. 

Regarding the BKT parameter estimation procedure, Corbett and Anderson [10] discussed 

individualization per skill and individualization per student of all four BKT parameters. While 

the individualized BKT model resulted in a better correlation between actual and expected 

accuracy across students, when compared to the non-individualized BKT model, the accuracy of 

predicting student test scores (after a period of working with a tutoring system) did not improve 

tangibly [35]. Finally, the parameter fitting procedure of the vanilla model relates to expert-

based estimations of the four BKT parameters per skill. 

  



 

8 

 

4. METHODOLOGY 

The methodology used to review the BKT enhancements and evaluation approaches is in line 

with the PRISMA guidelines [24] consisting of (i) Rationale, objectives and research questions 

(ii) Eligibility criteria, information sources, and a search strategy (iii), Screening process and 

study selection and (iv) Data collection and features. Since we have elaborated on the rationale 

and objectives in the previous sections, we proceed with the criteria, sources and search strategy 

of works that fall under the scope of this systematic review. 

The main eligibility criterion referred to scientific works that aimed to enhance the vanilla BKT 

model and that were published in the relevant scientific databases until 2022. The 

implementations of the BKT enhancements could proceed in two directions: the extension of the 

Bayesian network architecture and/or the research of new computational methods in a certain 

context. 

We searched the scientific databases indexing quality-proven journals and conference 

proceedings, including the Web of Science (Core Collection), Scopus, ACM (Full-Text 

Collection), IEEE Xplore, and Google Scholar (accessed on March 10, 2023). The search 

strategy included the phrase knowledge tracing and versions of the Bayes and probabilistic terms 

that were included in the publication abstracts. Due to the extensiveness of the Google Scholar 

database, the publication titles were searched for the complete phrase Bayesian knowledge 

tracing. The search details including the number of publication results are presented in Table 4.1. 

Table 4.1: Database search details. 

Database Search query ( - 2022) # 

Web of Science (CC) “knowledge tracing” (Abstract) AND (bayes* OR probab*) (Abstract) 89 

Scopus ABS ( “knowledge tracing” )  AND  ABS ( ( bayes*  OR  probab* ) ) 200 

ACM (Full-Text Collection) 
[Abstract: “knowledge tracing”] AND [[Abstract: bayes*] OR [Abstract: 

probab*]] 
25 

IEEE Xplore 
(“Abstract”:”knowledge tracing”) AND (“Abstract”:bayes* OR 

“Abstract”:probab*) 
20 

Google Scholar allintitle: “bayesian knowledge tracing” 75 

 

Figure 4.1 shows the PRISMA flow diagram of the publication identification and screening 

process. Out of 409 results from the five academic databases, we compiled 223 publications (177 

duplicates and 9 conference proceedings removed). 

The screening of abstracts resulted in the exclusion of 84 publications. They were out of the 

scope, review papers, available in languages other than English or as a programming code.  

In the second phase of screening of 139 full-text manuscripts, we further excluded 83 

publications due to the eligibility criteria, not retrieval, or the language other than English.  

During the full-text reading phase, the resulting 56 publications were used as a source of 

additional 17 publications that were included in the review. The additional publications were part 

of specific events (e.g. Chang et al [36] presented on the 21st Annual meeting of the American 

Association for Artificial Intelligence), conferences not indexed in scientific databases for the 
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given year (e.g. International Conference on Educational Data Mining in 2014) or works indexed 

using different keywords (e.g. Baker et al [37]). 

 

Figure 4.1: PRISMA flow diagram of the publication identification and screening process. 

Finally, 73 publications were encompassed in this review study, including the vanilla BKT 

publication [10]. 

To get a closer insight into the publications included in the review, we provided the yearly 

heatmap of the most frequent sources of BKT research in Table 4.2, in which ‘Other’ denotes 

sources with a single identified publication. 

The most common sources were scientific conferences, including the International Conference 

on Educational Data Mining (IC EDM), International Conference of Intelligent Tutoring Systems 

(IC ITS), International Conference of Artificial Intelligence in Education (IC AIED), 

International Conference on User Modelling, Adaptation, and Personalization (IC UMAP), ACM 

Conference on Learning at Scale (ACMC L@S), International Conference on Learning Analytics 

& Knowledge (IC LA&K), IEEE Conference on Big Data (IEEEC BigData) and the User 

Modelling and User-Adapted Interaction (UMUAI) Journal. There was increase in the number of 

publications in 2008, 2010, and between 2013 and 2018.  
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Table 4.2: Heatmap of the most frequent sources of publications in the research of BKT 

enhancements. 
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IC ITS  1   2    2  2  2      9 

IC AIED    1      2    1   1 1 6 

IC UMAP       2 1    1 2      6 

ACM C L@S            2 1   1   4 

IC LA&K            2 1      3 

IEEE BigData              1 1    2 

UMUAI 1    1              2 

Other   1 1       3 3 1 2 3  2 2 18 

Total (T) 1 1 1 2 4 1 4 2 3 7 8 9 12 4 7 1 3 3 73 

To address the RQ1 and elaborate on various enhancements of the BKT, we found the vanilla 

model assumptions as appropriate review criteria. The vanilla assumptions derive from the 

architectural and educational context-based properties of the vanilla BKT model proposed by 

Corbett and Anderson in [10]. The architectural properties refer to the Hidden Markov model 

elements, including the nodes with corresponding states and the relationships between nodes 

(assumptions A01-A07 in the following text). The educational context-based properties include 

the vanilla assumptions on the knowledge components dependence, question difficulty and 

answer attempts (A08-A10). 

The theory of knowledge inference in the vanilla model consists of the knowledge node with the 

binary learned and unlearned state (A01) and the performance node with the binary correct and 

incorrect state (A02). The prior knowledge, guessing, slipping, and learning parameters are 

defined as expert-based probabilities estimated per skill (A03-A06). The model follows the no-

forgetting paradigm by omitting the transition from the learned to the unlearned state (A07). The 

independent knowledge components (A08) consist of sets of equally difficult questions used 

during the knowledge inference process (A09). Although a student may have multiple attempts to 

answer the question in the educational platform, the vanilla model counts only the first attempt 

(A10). 

Besides architectural and educational context-based enhancements, to address the RQ1, we 

reviewed the computational methods used in the enhanced BKT models. 

Regarding the RQ2, each publication that proposed enhancements evaluated the approaches by 

using the datasets from specific educational platforms. Although the diversity and specificity of 

these studies did not allow the direct comparison of achieved results, this review study provides 

more insights into the evaluation approaches. 
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5. BKT ENHANCEMENTS 

This study aimed to give the overview of BKT enhancements encompassed by the identified 

research studies. The identified studies resulted in 62 enhanced BKT models. Some publications 

referred to the enhancements of the same model, so they were noted as multiple sources of the 

single enhanced BKT model (e.g. [36], [38]). For more than one source publication per model, 

we considered the year of the earlier publication as a model source year. 

While some of the BKT models addressed the architectural and educational context-based 

properties of the vanilla BKT model (A01-A10), they also proposed new computational methods. 

On the other side, there were studies focused on the new computational methods without 

changing the architectural or educational context-based properties. Therefore, we found 

important to analyse these two aspects independently. 

The analysis described in the subsection 5.1. reviews the enhancements of the architectural and 

educational context-based properties, including the specific enhancements of each of the four 

BKT parameters (A03-A06). The overview of computational methods used for the parameter 

estimation is given in the subsection 5.2. The evaluation approaches of enhanced BKT models 

are presented in the following subsection 5.3. 

5.1. The architectural and educational context-based enhancements (RQ1) 

To summarize the enhanced BKT models, we proposed the enhancement criteria that are 

in line with the vanilla BKT model assumptions. The enhancement criteria are the result of an 

iterative analysis of the identified research studies and represent a unique way of classifying the 

BKT enhancements. Besides the criteria found in the vanilla BKT model (enhancements E01-

E10 in Table 5.1), there were enhancements that extended the vanilla BKT model with new 

aspects. Additional vanilla BKT enhancements included Student characteristics (E11), Tutor 

interventions (E12), and Noise in data (E13). Table 5.1 shows the complete list of BKT 

enhancements and the related vanilla model assumptions. 

Table 5.1: Enhancement criteria used to review BKT models. 

BKT Enhancements (E) Vanilla BKT model Assumptions (A) 

E01 Knowledge states A01 
Knowledge component node in the Bayesian network includes the binary learned and unlearned 
state 

E02 Performance states A02 Performance node in the Bayesian network includes the binary correct and incorrect state  

E03 Prior knowledge A03 The prior knowledge probability is defined per skill 

E04 Guessing A04 There is a probability of guessing defined per skill  

E05 Slipping A05 There is a probability of slipping defined per skill  

E06 Learning A06 The learning transition probability is defined per skill 

E07 Forgetting paradigm A07 
The no-forgetting paradigm is followed meaning that there is no transition from learned to 

unlearned state 

E08 
Domain knowledge 
properties 

A08 Domain knowledge fractionates into independent knowledge components 

E09 Question difficulty A09 Questions of each knowledge component are of equal difficulty 

E10 Multiple attempts A10 The first attempt to answer the question counts during the modelling process 

E11 Student characteristics Not included 

E12 Tutor interventions Not included  

E13 Noise in data Not included 
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Although each change in the Bayesian network architecture directly implied the update of BKT 

parameters, E03-E06 criteria encompassed BKT models with the primary focus on the prior 

knowledge, guessing, slipping and learning BKT parameters, e.g. Contextual Guess and Slip 

method [39]. The summarized results of the review of BKT enhancements are presented using a 

yearly heatmap in Table 5.2. The total of 54 enhanced BKT models addressed the architectural 

and educational context-based properties of the vanilla BKT model.  

Table 5.2: The heatmap of the research on BKT enhancements. 

BKT Enhancements (E) 
20

04 

20

06 

20

08 

20

10 

20

11 

20

12 

20

13 

20

14 

20

15 

20

16 

20

17 

20

18 

20

19 

20

20 

20

21 

20

22 
T 

E01 Knowledge states   1        1 2   1  5 

E02 Performance states   1 1     1 2     1  6 

E03 Prior knowledge    1   2 1 2 1 1      8 

E04 Guessing   1 1 1      1 1     5 

E05 Slipping   1 1 2      1 1     6 

E06 Learning       3     1     4 

E07 Forgetting paradigm  1 1  1    1 1  1     6 

E08 Domain know. prop.       1 3 1 3 1  1   2 12 

E09 Question difficulty     1  1 3 1 1 1 1     9 

E10 Multiple attempts   1 1   1 1 1 1    1   7 

E11 Student characteristics   1 1  3  4 1 4  4   1 1 20 

E12 Tutor interventions  1 2 2     1 2 1 1     10 

E13 Noise in data 1        1       1 3 

Total (T) 1 2 9 8 5 3 8 12 10 15 7 12 1 1 3 4 101 

The first enhanced BKT model emerged in 2004, a decade after the vanilla model. Over the 

years, the enhancements were continuously investigated and the most frequent additions to the 

vanilla model included Student characteristics (20 research studies), Domain knowledge 

properties (12 r.s.), Tutor interventions (10 r.s.), and Question difficulty (9 r.s.). There was 

decrease in the research after 2018, probably due to the COVID-19 pandemic. 

Since each examined research study could enhance one or more of the proposed criteria, we 

analysed the most frequent variations of the investigated BKT enhancements. It is worth noting 

that a single criterion represents the simplest enhancement variation. The results are presented in 

Table 5.3 and variations found in a single research study are summarized as ‘Other’. 

Table 5.3: The variations of investigated BKT enhancements. 

# BKT Enhancements (E) # Enhanced BKT models 

1 E11 Student characteristics 9 

2 E08 Domain knowledge properties 7 

3 E03 Prior knowledge 5 

4 E04 Guessing, E05 Slipping, E11 Student characteristics, E12 Tutor interventions 3 

5 E09 Question difficulty, E11 Student characteristics 2 

6 E11 Student characteristics, E12 Tutor interventions 2 

7 E13 Noise in data 2 

8-31 Other 24 

Among 31 type of enhancement variations, the results indicate that the single criteria of Student 

characteristics, Prior knowledge and Domain knowledge properties were the most frequently 

investigated variations. The most frequent combination of enhancements found in 3 research 

studies included Guessing, Slipping, Student characteristics and Tutor interventions criteria. 
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The research related to each BKT enhancement is shown in Table 5.4. 

Table 5.4: Enhanced BKT models per proposed criteria. 

BKT Enhancements (E) BKT models 

E01 Knowledge states Halpern et al., 2018; Liu et al., 2021; Schodde et al., 2017; Yudelson et al., 2008; Zhang & 

Yao, 2018 

[40]–[44] 

E02 Performance states David et al., 2016; Liu et al., 2021; Ostrow et al., 2015; Y. Wang et al., 2010; Y. Wang & 

Heffernan, 2013; Z. Wang et al., 2016; Yudelson et al., 2008 

[41], [43], [45]–[49] 

E03 Prior knowledge Eagle, Corbett, Stamper, McLaren, Baker, et al., 2016; Eagle, Corbett, Stamper, McLaren, 

Wagner, et al., 2016; Eagle et al., 2017; Nedungadi & Remya, 2014, 2015; Pardos & 

Heffernan, 2010a; Song et al., 2015; S. Wang et al., 2017; Xu & Mostow, 2013; Yudelson et 

al., 2013 

[35], [50]–[58] 

E04 Guessing Agarwal et al., 2018; Baker et al., 2008b, 2008a, 2010; Pardos & Heffernan, 2011; Zhou et al., 

2017 

[37], [39], [59]–[62] 

E05 Slipping Agarwal et al., 2018; Baker et al., 2008b, 2008a, 2010; Pardos & Heffernan, 2011; Qiu et al., 

2011; Zhou et al., 2017 

[37], [39], [59]–[63] 

E06 Learning Adjei et al., 2013; Baker et al., 2018; Sao Pedro et al., 2013; Yudelson et al., 2013 

[35], [64]–[66] 

E07 Forgetting paradigm Beck et al., 2008; Chang et al., 2006b; Halpern et al., 2018; Khajah et al., 2016; Nedungadi & 

Remya, 2015; Qiu et al., 2011; Yudelson et al., 2008 

[31], [36], [38], [40], [43], [54], [63] 

E08 Domain know. prop. González-Brenes et al., 2014; Huang et al., 2016; Huang & Brusilovsky, 2016; Khajah et al., 

2016; Meng et al., 2019; Sao Pedro et al., 2013, 2014; Z. Wang et al., 2016; Hawkins & 

Heffernan, 2014; MacHardy, 2015; MacHardy & Pardos, 2015; Z. Wang et al., 2016; Sun et al, 

2022; Chan et al, 2022 

[31], [49], [49], [66]–[76] 

E09 Question difficulty Baker et al., 2018; David et al., 2016; González-Brenes et al., 2014; Khajah, Huang, et al., 

2014; Khajah, Wing, et al., 2014; Ostrow et al., 2015; Pardos et al., 2013; Pardos & Heffernan, 

2011; Zhou et al., 2017 

[45], [46], [61], [62], [65], [67], [77]–[79] 

E10 Multiple attempts Bhatt et al., 2020; Gonzalez-Brenes et al., 2014; Pardos et al., 2013; Yudelson et al., 2008 

[43], [67], [79], [80]  
E11 Student characteristics Agarwal et al., 2018; Baker et al., 2008b, 2008a, 2010; Eagle et al., 2018; Khajah, Wing, et al., 

2014; Khajah et al., 2016; Nedungadi & Remya, 2014; Yudelson, 2021; Zhu et al., 2018; Xu et 

al., 2014; Corrigan et al., 2015; Spaulding et al., 2016; Rau & Pardos, 2016; Lin et al., 2016; 

Lin & Chi, 2016; Halpern et al., 2018; Khajah, Huang, et al., 2014; J. I. Lee & Brunskill, 2012; 

Pardos et al., 2012; Y. Wang & Heffernan, 2012; Gorgun & Bulut, 2022 

[31], [37], [39], [40], [53], [59], [60], [77], [78], [81]–[93] 

E12 Tutor interventions Agarwal et al., 2018; Baker et al., 2008b, 2008a, 2010; Beck et al., 2008; Chang et al., 2006b; 

Lin et al., 2016; Lin & Chi, 2016; Ostrow et al., 2015; Rau & Pardos, 2016; Schodde et al., 

2017; Y. Wang et al., 2010; Y. Wang & Heffernan, 2013; Yudelson et al., 2008 

[36]–[39], [42], [43], [46]–[48], [59], [60], [87]–[89] 

E13 Noise in data Beck & Sison, 2004; Falakmasir et al., 2015; Gorgun & Bulut, 2022 

[93]–[95] 

5.2. Computational methods (RQ1) 

Regarding the computational methods used in the proposed BKT approaches, they were 

generally related to the estimation of BKT parameters. As we already mentioned, there were 

models that did not have to interfere with the vanilla model assumptions, but primarily addressed 

the computational challenges, e.g. Dirichlet priors method [96], [97]. Overall, 56 enhanced BKT 

models reported the use of computational methods. 
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The results of the review of computational methods used in the research of BKT enhancements 

found in over 2 identified research studies are presented in Table 5.5. 

 Table 5.5: Computational methods used in the research of BKT enhancements. 

# Computational methods with over 2 applications # Enhanced BKT models 

1 Expectation-Maximization method 24 

2 Markov Chain Monte Carlo (MCMC) method 5 

3 Brute force method 4 

4 K-means clustering 4 

5 Contextual Guess and Slip method 3 

6 Knowledge Heuristics and Empirical probabilities method 3 

7-31 Other 32 

In terms of the computational methods, most of the research aimed to improve the expert-based 

estimations of BKT parameters used in the vanilla model. In that sense, the Expectation-

Maximization method, firstly used in 2006, practically became the standard (24 research 

studies). The other computational methods included the Monte Carlo method (5 r.s.), the Brute 

force method (4 r.s.), K-means clustering (4 r.s.), the Contextual Guess and Slip method (3 r.s.), 

and the Knowledge Heuristics with Empirical Probabilities method (3 r.s.). 

The increased interest in the research of the Expectation-Maximization method resulted in 

detection of difficulties. Although firstly reported as the model identifiability problem [97], 

Doroudi and Brunskill [98] revealed that under mild conditions on the parameters, the BKT 

model is actually identifiable and it ‘only’ suffers from the local optima problem. The recent 

open-source accessible and computationally efficient Python library of BKT models – pyBKT 

[30] also includes the Expectation-Maximization method to fit the BKT parameters. Since it is 

well known that the Expectation-Maximization algorithm is susceptible to converging to local 

optima of the likelihood function rather than converging to the global optimum (local optima 

problem), the pyBKT runs multiple iterations of the algorithm with different initializations of the 

parameters to avoid this problem [30]. Besides, it was reported that the Expectation-

Maximization method is prone to the semantic model degeneracy, meaning that it can be 

inconsistent with the conceptual assumptions underlying the BKT model [98]. 

5.3. Evaluation approaches (RQ2) 

In terms of the evaluation approaches, we reviewed educational platforms and 

performance measures included in the research of BKT enhancements. 

Table 5.6 shows a yearly heatmap of the educational platforms used in the reviewed publications. 

We summarized those platforms with a single application as ‘Other’. 

Besides ITSs, we found the application of the BKT model enhancements in MOOCs, game-

based platforms, and online learning platforms in the field of human resources. The research on 

the BKT enhancements typically included the ASSISTments (19 r.s.) and the Cognitive Tutor 

(19 research studies). Other educational platforms with over 2 applications referred to Massive 

Open Online Courses (5 r.s.) and simulated datasets (7 r.s.). The MOOC environments included 

the edX [79], the Coursera [49], the Khan Academy [31], [74], and the Junyi Academy [83].  
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Table 5.6: Educational platforms used in the research of BKT enhancements. 

Educational 

platforms 

20
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20
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14 

20
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20
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20
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20

18 

20
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20

20 

20
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T 

Assistments     2 2 2 1 3 3 1 1 1   1 2 19 

Cognitive Tutor   1 1 1 2 1 2 2 2 2  1 1  2 1 19 

Simulated data     1   2   1  2 1    7 

MOOC        1  1 2  1     5 

Andes Tutor         2         2 

Inq-ITS        1 1         2 

JavaGuide         1  1       2 

Reading Tutor  1       1         2 

Robot Tutor           1 1      2 

Other 1  1      2 1 6 2 3 1 1   18 

Total (T) 1 1 2 1 4 4 3 7 12 7 14 4 8 3 1 3 3 78 

As for the domain, the examined datasets were related to Math (38 r.s.), Language learning and 

Programming (per 6 r.s.), Genetics, Physics and Engineering (per 3 r.s.), Science (per 2 r.s.), and 

Medicine and Chemistry (per single r.s.). 

The only publicly available datasets identified in the review were related to the environments of 

the Cognitive Tutor and the ASSISTments. These datasets were part of the Educational Data 

Mining KDD Cup Challenge, hosted by PSLC DataShop [99], that highly contributed to the 

awareness of the importance of replicability and comparison of the proposed models.  

Regarding the used performance measures, Table 5.7 shows the most frequently used measures 

in the research of BKT enhancements with over 2 applications. 

Table 5.7: Performance measures used in the research of BKT enhancements. 

# Performance measures with over 2 applications # Enhanced BKT models 

1 RMSE 27 

2 AUC-ROC 22 

3 Accuracy 19 

4 MAE 8 

5 Correlation 3 

6-14 Other 13 

The most frequently used performance measures included the RMSE measure (Root Mean 

Square Error, 27 r.s.), the AUC-ROC (Area Under Curve, Receiver Operating Characteristics 

curve, 22 r.s.) and the Accuracy measure (19 r.s.). These performance measures are frequently 

used metrics for classification tasks in the machine learning field. 

Overall, the research of BKT enhancements included two types of model evaluations, including 

(i) the prediction of in-tutor performance as the correctness of the following student’s answer and 

(ii) the ability to estimate overall knowledge mastery. The first type of evaluation was frequently 

applied in the literature and used performance measures such as RMSE, AUC-ROC and 

Accuracy. In terms of the knowledge mastery prediction, only a few research studies investigated 

the relationship between knowledge estimated by the system and knowledge demonstrated on the 

post-test outside of the system’s environment [42], [43], [60], [88], [89], [94]. 

The researchers typically compared the proposed models to the vanilla BKT model and despite 

the variety of BKT models over the years, the accessible and easy to use BKT implementations 
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remained elusive. There were only three available BKT implementation frameworks, including 

the Bayes Net Toolbox [100], [101], the hmm-scalable implementation [35] and the approach 

proposed by Xu et al. [102] for MOOC resources. While most of the enhanced BKT models 

reported better results than the vanilla model, the unexpected and mixed results for both types of 

evaluation approaches were reported in the literature.  

The unexpected performance results as the model drawbacks were reported in the case of the 

Help BKT model [38], [100], the Affective BKT model [85], the BKT with eye-tracking model 

[87] and the model by Adjei et al [64]. The parameters of the Help BKT model suggested that 

students benefited from the scaffolding and teaching effects of help. Despite that information, the 

Help BKT model did not outperform the vanilla model. The possible reason for such results may 

be the overfitting of the data. In the case of the Affective BKT, the model did not offer additional 

predictive power beyond vanilla model, probably due to the lack of variability in the binary 

affective state measured across student responses. The BKT with eye-tracking data did not add 

information relevant to students’ representation skills, possibly for the same reason as the 

Affective BKT. Adjei et al concluded that the different learning rates based on the answer 

correctness did not lead to better model predictions. 

In terms of the mixed performance results, several research studies reported ambiguous results 

dependent on the educational settings, including the BKT with Contextual guess and slip method 

(CGS-BKT) [37], [39], the Item Difficulty Effect Model (KT-IDEM) [61], the Student Skill 

BKT model (SS-BKT) [92] and the BKT with tutoring actions [42]. While the CGS-BKT 

showed better results than the vanilla model in predicting in-tutor performance, the model 

performed much more poorly on the post-test. In the case of the KT-IDEM, the model provided 

reliably better in-tutor performance prediction on the ASSISTments dataset but was not 

significantly different from vanilla model in the case of the Cognitive Tutor. Also, it was found 

that the SS-BKT model was investigated under the simulated conditions and outperformed the 

vanilla model only when the number of students and skills were large. As in the case of the CGS-

BKT, the BKT with tutoring actions did not show a significant difference in the post-test results.  
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6. CONCLUSION 

It has been 25 years of BKT research, and the vanilla model is still a representative Bayesian 

network-based approach. Over the years, various improvements have been proposed in the 

literature, mostly outperforming the vanilla model, but their limited availability negatively 

affected their further application. Even the latest research on deep learning-based knowledge 

tracing revealed that just enabling the forgetting parameter in the vanilla model led to similar 

results as the neural network-based model.  

Because of the specificities of the educational platforms and subsets of data used to train the 

models, there is no possibility to compare the achieved performance results of the proposed 

enhanced models. Moreover, there has been no systematic review of the BKT enhancements 

since its introduction, as the existing research reviewed only subsets of enhanced models. The 

most extensive student modelling review focused on ML approaches and encompassed 18 

student models based on Bayesian networks [11]. The other review study elaborated on the 8 

BKT models from 2010 to 2015 [15]. The systematic review from 2013 discussed the 13 ML 

student models and 18 Bayesian network-based models [19]. In addition, each publication that 

proposes enhanced BKT model also provides only subset of the background literature because of 

the limited format and different purpose. Finally, this study brings a systematic and more 

exhaustive review by encompassing 62 BKT models that aimed to enhance the vanilla model. 

To summarize the research on the BKT enhancements, we proposed the unique set of criteria, 

including 10 aspects based on the vanilla model assumptions and 3 aspects new to the vanilla 

model. The most frequently improved aspects were additional to the vanilla model and included 

student characteristics and tutor interventions. The other frequently investigated aspects included 

the domain knowledge properties (assumed as independent knowledge components in the vanilla 

model) and the question difficulty (assumed as constant in the vanilla model). Although less 

investigated in the literature, the obvious drawbacks of the vanilla model referred to the binary 

states and exclusion (common prior knowledge and only the first answer attempt considered in 

the vanilla model). As suggested in the reference literature, the uncertainty and fuzziness in this 

context would be more appropriate. Besides, knowledge does fade, and as research shows, it 

occurs in such a short period that the inclusion of the forgetting parameter is mandatory. 

Overall, the BKT enhancements can be differed as generally applicable and dependent on the 

capabilities of educational settings. While most of the enhancements already defined by the 

vanilla model represent generally applicable enhancements, if the educational environment 

enables specific features (e.g., student characteristics, tutor interventions), the research suggests 

checking their contribution to the knowledge inference process. 

Besides the previous enhancement criteria, the BKT models were reviewed according to the 

incorporated computational methods. The enhanced models generally improved the expert-based 

estimations of BKT parameters assumed by the vanilla model. The early introduction of the 

Expectation-Maximization method proved efficient and has become the standard in this context. 

However, we expect that the novel ML methods will eventually contribute to the research 

challenges related to the BKT. 
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The major limitation in the BKT research is model availability. The positive example in this 

context is the pyBKT library [30], a recently introduced accessible and computationally efficient 

BKT implementation framework. Besides general features, the generalized BKT model requires 

an accessible and easy to use implementation framework. 

Regarding the future research, various educational environments represent a broad testing ground 

and we find interesting to investigate the potential application of BKT models in the context of 

the Moodle LMS and the higher education course with over 150 students. Based on the BKT 

research, adaptive and individualized formative tests will be introduced to facilitate higher 

learning engagement and performance. In this sense, we seek for the student model that will 

enable the prediction of the overall student performance based on the weekly estimations of 

knowledge mastery. 
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ABSTRACT 

The quality of an Artificial Intelligence-based tutoring system is its ability to observe and 

interpret student behaviour to infer the preferences and needs of an individual student. The 

student model enables a comprehensive representation of student knowledge and affects the 

quality of the other Intelligent Tutoring System’s (ITS) components. The Bayesian Knowledge 

Tracing (BKT) model is one of the first machine learning-based and widely investigated student 

models due to its interpretability and ability to infer student knowledge. The past 25 years have 

seen increasingly rapid advances in the field, so this systematic review deals with the BKT 

model enhancements by using the PRISMA guidelines and a unique set of criteria, including 13 

aspects of enhancements and computational methods. Also, the study reveals two types of 

evaluation approaches found in the literature, including the prediction of student answers and the 

ability to estimate knowledge mastery. Overall, the most frequently investigated enhancements 

referred to the aspects added to the vanilla BKT model, including Student characteristics, Tutor 

interventions, and Domain knowledge properties, as well as the Question difficulty aspect pre-

assumed as unique and constant. Regarding the used computational methods, the Expectation-

Maximization algorithm practically became the standard in estimating BKT parameters. While 

the enhanced BKT models generally overperformed the vanilla model in predicting the student 

answer by using the measures such as RMSE (Root Mean Square Error), AUC-ROC (Area 

Under Curve, Receiver Operating Characteristics curve) and Accuracy, only a few studies further 

investigated the systems’ estimations of knowledge mastery. The most frequently used 

educational platforms encompassed ITSs and Massive Open Online Courses (MOOCs), as well 

as simulated environments. The future work will focus on the adaptive and individualized 

formative tests based on BKT models with the aim to facilitate higher learning engagement and 

performance. In this sense, we seek for the student model that will enable the prediction of the 

overall student performance based on the weekly estimations of knowledge mastery. 

  



 

 
 

SAŽETAK 

Kvaliteta sustava za poučavanje koji se temelji na umjetnoj inteligenciji je njegova sposobnost 

promatranja i interpretacije učenikovog ponašanja s ciljem zaključivanja o individualnim 

potrebama. Model učenika, kao strukturna komponenta sustava za poučavanje, pruža cjelovit 

prikaz znanja i utječe na kvalitetu ostalih komponenti sustava. Bayesian Knowledge Tracing 

(BKT) model jedan je od prvih modela učenika koji se temelji na strojnom učenju i čest je 

predmet istraživanja zbog svoje interpretabilnosti i sposobnosti zaključivanja o znanju učenika. S 

obzirom da se model istražuje već više od 25 godina, ovdje se prezentira sustavan pregled 

poboljšanja osnovnog BKT modela. Pregled koristi Preferred Reporting Items for Systematic 

Reviews and Meta-Analysis (PRISMA) smjernice i jedinstveni skup kriterija koji se sastoji od 13 

aspekata poboljšanja te korištenih računalnih metoda. Također, u pregledu se daje prikaz pristupa 

vrednovanju BKT modela, kao i uključene obrazovne platforme te statističke mjere. Rezultati 

pokazuju da poboljšani BKT modeli najčešće istražuju individualne karakteristike učenika, 

intervencije sustava, karakteristike područnog znanja, kao i uvođenje različite težine pitanja koja 

je u osnovnom modelu pretpostavljena kao jedinstvena. U kontekstu korištenih računalnih 

metoda, Expectation-Maximization metoda je praktički postala standard u procjeni parametara 

BKT modela. Vrednovanje BKT modela najčešće uključuje predviđanje učenikovog odgovora 

koristeći mjere poput RMSE (Root Mean Square Error), AUC-ROC (Area Under Curve, 

Receiver Operating Characteristics curve) i točnosti (Accuracy), dok se rjeđe istražuje 

sposobnost BKT modela pri procjeni ukupnog učenikovog znanja. Najčešće istraživane 

obrazovne platforme uključuju Inteligentne tutorske sustave (Intelligent Tutoring Systems, ITS) i 

Masovne otvorene online tečajeve (Massive Open Online Courses, MOOC), dok nekolicina 

istraživanja koristi i simulirane podatke. U daljnjem istraživanju ćemo se usredotočiti na 

adaptivne i individualizirane formativne testove temeljene na BKT modelima s ciljem povećanja 

angažmana u učenju te ukupne uspješnosti učenika. Istražit ćemo sposobnost takvog modela 

učenika temeljenog na tjednim komponentama znanja u predviđanju ukupnog znanja učenika. 

 


